Skeleton-to-Response: Dialogue Generation Guided by Retrieval Memory

Deng Cai1 Yan Wang2 Wei Bi2
Zhaopeng Tu2 Xiaojiang Liu2 Wai Lam1 Shuming Shi2

1The Chinese University of Hong Kong
2Tencent AI Lab

NAACL, 2019
Outline

1. Introduction
 - Background
 - Existing Work

2. Our Framework
 - Motivation
 - Overview
 - Components
 - Integration

3. Experiments
 - Setup
 - Results and Analysis
Chit-chat style dialogue systems (chatbots):

- retrieval models (IR)
- Generative models (seq2seq)
Comparison between retrieval models and generative models.

<table>
<thead>
<tr>
<th></th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>retrieval models</td>
<td>informative</td>
<td>generalize poorly (sometimes inappropriate)</td>
</tr>
<tr>
<td>Generative models</td>
<td>safe</td>
<td>boring (e.g. “I don’t know")</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uninformative (repeat the query)</td>
</tr>
</tbody>
</table>
Existing retrieval-guided generative models

Song et al. (2016)
Weston et al. (2018)
Pandey et al. (2018)
Wu et al. (2019)
Existing retrieval-guided models are inclined to degenerate into a copy mechanism.

1. the generative models simply repeat the retrieved response without necessary modifications.

2. Sharp performance drop is caused when the retrieved response is irrelevant to the input query.
Motivation

maintain the generalization ability

The guidance from IR results should only specify a response aspect or pattern, but leave the query-specific details to be elaborated by the generative model itself.

information filter of retrieved results

The retrieval results typically contain excessive information, such as inappropriate words or entities. It is necessary to filter out irrelevant words.
Overview

Query: My son loves Disneyland. He is addicted to the Iron Man Experience.

Retrieved Query: Disneyland is amazing, I am addicted to the Mickey.

Retrieved Response: My daughter loves Mickey, too. She likes Mickey’s PhilharMagic.

Skeleton: _ loves _, too. _ like _

Skeleton Generator: remove

Response Generator: rewrite

Response: I love the Iron Man, too. I like watching Iron Man’s comics

Skeleton-then-response: first constructs a response skeleton by removing some words in the retrieved response, then a response is generated via rewriting based on the skeleton.
Components

Skeleton Generator transforms a retrieved response into a skeleton by explicitly removing inappropriate or useless information regarding the input query.

Response Generator adds query-specific details to the generated skeleton for query-to-response generation.

Query: My son loves Disneyland. He is addicted to the Iron Man Experience.

Retrieved Query: Disneyland is amazing, I am addicted to the Mickey.

Retrieved Response: My daughter loves Mickey, too. She likes Mickey’s PhilharMagie.

Skeleton: _ loves _ , too. _ like _

I love the Iron Man, too. I like watching Iron Man’s comics
The skeleton generation is formulated as a series of word-level masking actions (sequence labelling).
We compute an edit vector z based on insertion words I and deletion words D. The two bags of words highlight the changes in the dialogue context, corresponding to the changes in the response.

The probability of masking the i-th token:

$$P(\hat{m}_i = 1) = \text{sigmoid}(W_m[h_i \oplus z] + b_m)$$
Response Generator

Three parts: skeleton encoder, query encoder, and response decoder.

The decoder interacts with two encoders by separate attention mechanism. The query and skeleton are fused by gated combination.

\[y_t = (W_c [s_t \oplus c_t]) \cdot g_t + c'_t \cdot (1 - g_t) \]
Due to the **discrete choice** of skeleton words, the overall model cannot be trained end-to-end using the standard maximum likelihood estimate.

Our solutions:

1. Joint Integration (multi-task learning)
2. Cascaded Integration (reinforcement learning)
Joint Integration

- We connect the skeleton generator and the response generator via a shared network architecture rather than by passing the discrete skeletons.

- The training objective is the sum of the proxy skeleton labels likelihood \(L(\theta_{ske}) \) and the response likelihood \(L(\theta_{res}) \):

\[
L(\theta_{res} \cup \theta_{ske}) = L(\theta_{res}) + \eta L(\theta_{ske})
\]
The last hidden states in our skeleton generator are directly used as the skeleton memories in response generation.
Cascaded Integration

- Policy gradient methods (Williams, 1992) can be applied to optimize the full model while keeping it running as cascaded process.
 1. First RL agent: the skeleton generator
 2. Second RL agent: the response generator

- Reward design:

\[
\log D(r|q, \hat{r}, \bar{r}, r) = \log \frac{\exp(h_r^T M_D h_q)}{\sum_{x \in \{\hat{r}, \bar{r}, r\}} \exp(h_x^T M_D h_q)}
\]

where \(\hat{r}\) is the machine-generated response, \(r\) is the human-written response, and \(\bar{r}\) is a random response (yet written by human).
Do you like banana?

Yes, apple is my favorite.

Yes, __ is my favorite.

Skeleton memories:

Decoder:

Generated response: Yes, banana is my favorite.

CUHK & Tencent AI Lab

Skeleton-to-Response

NAACL, 2019
We use the preprocessed data in Wu et al, (2019) as our test bed.

- single-turn query-response pairs collected from Douban Group.\(^1\)
- 5 million training quadruples \((q, r, q', r')\) and 1000 queries for test
- It is required that \(0.3 \leq Jaccard(r, r'_i) \leq 0.7\) for training quadruples.

The training quadruples for IR-augmented models are constructed based on response similarity (similar contexts may correspond to totally different responses).

\(^1\)https://www.douban.com/group
Compared Methods

- **Seq2Seq** the standard attention-based RNN encoder-decoder model (Bahdanau et al., 2014).
- **MMI Seq2Seq** with Maximum Mutual Information (MMI) objective in decoding (Li et al., 2016a).
- **EditVec** the model proposed by Wu et al. (2019).
- **IR** the Lucene system is also used as a benchmark.²
- **IR+rerank** rerank the results of **IR** by **MMI**.

²Note IR selects response candidates from the entire data collection, not restricted to the filtered one.
Model Variants

- **JNT** our model with joint integration.
- **CAS** our model with cascaded integration.
- **SKP** our response generator that takes an intact retrieval response as its skeleton input (i.e., to completely skip the skeleton generation step)
Evaluation Metrics

- **Human Evaluation** Responses are rated on a five-point scale. A response should be scored:
 1. 1 if it can hardly be considered a valid response.
 2. 2 if it is a valid but not informative response.
 3. 3 if it is an informative response, which can deepen the discussion of the current topic or lead to a new topic.
 4. 4 and 5 are for decision dilemmas.

- **Dist-1 & Dist-2** the number of unique uni-grams (dist-1) or bi-grams (dist-2) dividing by the total number of tokens, measuring the diversity of the generated responses (Li et al., 2016a)
Results and Analysis

Response Generation Results

<table>
<thead>
<tr>
<th>model</th>
<th>human score</th>
<th>dist-1</th>
<th>dist-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR</td>
<td>2.093</td>
<td>0.238</td>
<td>0.723</td>
</tr>
<tr>
<td>IR+rerank</td>
<td>2.520</td>
<td>0.208</td>
<td>0.586</td>
</tr>
<tr>
<td>Seq2Seq</td>
<td>2.433</td>
<td>0.156</td>
<td>0.336</td>
</tr>
<tr>
<td>MMI</td>
<td>2.554</td>
<td>0.170</td>
<td>0.464</td>
</tr>
<tr>
<td>EditVec</td>
<td>2.588†</td>
<td>0.154</td>
<td>0.394</td>
</tr>
<tr>
<td>SKP</td>
<td>2.581</td>
<td>0.152</td>
<td>0.406</td>
</tr>
<tr>
<td>JNT</td>
<td>2.612†</td>
<td>0.147</td>
<td>0.377</td>
</tr>
<tr>
<td>CAS</td>
<td>2.747</td>
<td>0.156</td>
<td>0.411</td>
</tr>
</tbody>
</table>

Response performance of different models. Sign tests on human score show that the CAS is significantly better than all other methods with p-value < 0.05, and the p-value < 0.01 except for those marked by †.
Results and Analysis

Response quality v.s. query similarity

The CAS model significantly boosts the performance when query similarity is relatively low, which indicates that introducing skeletons can alleviate erroneous copy and keep a strong generalization ability of the underlying generative model.
The use of skeletons makes the generated response deviate more from its prototype response. The changes between the generated response and the prototype response depend on the context similarity.
Results and Analysis

Single v.s. Multiple Retrieval Pair(s)

- **Single** For each query-response pair \((q_i', r_i') \in R_q\), a response \(\hat{r}_i\) is generated solely based on \(q\), and \((q_i', r_i')\). The resulted responses are re-ranked by generation probability.

- **Multiple** The whole retrieval set \(R_q\) is used in a single run. Multiple skeletons are generated and concatenated in the response generation stage.

<table>
<thead>
<tr>
<th>setting</th>
<th>human score</th>
<th>dist-1</th>
<th>dist-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>2.747</td>
<td>0.156</td>
<td>0.411</td>
</tr>
<tr>
<td>Multiple</td>
<td>1.976</td>
<td>0.178</td>
<td>0.414</td>
</tr>
</tbody>
</table>

Possible reason: The response generator receives many heterogeneous skeletons, yet it has no idea which to use.
The skeleton-then-response helps reduce the search space of possible responses and provides useful elements missing in the given query, resulting in more informative responses.

It might be used for controllable dialogue response generation.

The response skeleton could come from other sources, for example, a knowledge base.
Thanks!
thisisjcykcd@gmail.com