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Background

• Abstract Meaning Representation (AMR)


• rooted, labeled, directed graph


• nodes represent concepts


• edges represent relations
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During a time of prosperity and happiness, 
such a big earthquake suddenly struck. 



Challenges

During a time of prosperity and happiness, 
such a big earthquake suddenly struck. 
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• No explicit alignment of graph nodes and sentence tokens 


• Frequent reentrancies and non-projective arcs


• Large and sparse concept vocabulary



Existing Work
• Graph-based parsers (Flanigan et al., 2014; Lyu and Titov, 2018, Zhang et al., 

2019)


• pipeline design for concept identification and relation 
prediction


• Transition-based parsers (Wang et al., 2016; Damonte et al., 2017; 
Ballesteros and Al-Onaizan, 2017; Guo and Lu, 2018; Liu et al., 2018; Wang and Xue, 2017)


• process a sentence from left-to-right and constructs 
the graph incrementally 


• Seq2Seq-based parsers (Barzdins and Gosko, 2016; Konstas et al., 2017; van 
Noord and Bos, 2017)

• output a linearization (depth-first traversal) of the AMR 

graph.



Motivation
• Graph-based parsers


• misses the the interactions between individual 
decisions 


• Transition-based & Seq2Seq-based  parsers

• suffers from error propagation, where later decisions 

can easily go awry.

• Our framework 
• has a global view and

• a priority for capturing the main ideas first 
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During a time of prosperity and happiness, 
such a big earthquake suddenly struck. 

• Core Semantic First

During a time of prosperity and happiness, 
such a big earthquake suddenly struck. 

An earthquake suddenly struck at a 
particular time.
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Overview

Relation
Identification

Concept
Prediction

Relation
Classification

Graph
Update

End

• Graph spanning-based Parsing


• starts from the root 


• spans the nodes by the 
distance to the root


• at each step, a new node and 
its connections to existing 
nodes will be jointly predicted.



Comparisons

• versus Graph-based Methods:

• Captures more complicated intra-graph interactions


• versus Transition-based Methods:

• Removes the left-to-right restriction

• Avoids sophisticated oracle design for handling the 

complexity of AMR graphs


• versus Seq2seq-based Methods:

• Makes direct use of the graph structure information
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A dummy node we used to initialize the graph. 



Sentence & Graph 
Encoders
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• Transformer Encoders


• Graph is treated as a sequence of nodes for simplicity.



Focus Selection
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the following recurrence is applied by L times:
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where T (·, ·) is the multi-head attention function.
LN is the layer normalization (Ba et al., 2016) and
h0

t is always initialized with s0. For clarity, we
denote the last hidden state hL

t as ht, as the parser
state at the time step t. We now proceed to present
the details of each decision stage of one parsing
step, which is also illustrated in Figure 2.

4.3 Relation Identification

Our Relation Identification component is inspired
by a recent attempt of exposing auxiliary super-
vision on attention mechanism (Strubell et al.,
2018). It can be considered as another attention
layer over the existing graph, yet the attention
weights explicitly indicate the likelihood of the
new node being attached to a specific node. In
other words, its aim is to answer the question of
where to expand. Since a node can be attached to
multiple nodes by playing different semantic roles,
we utilize multi-head attention and take the maxi-
mum over different heads as the final arc probabil-
ities.

Formally, through a multi-head attention mech-
anism taking ht and v0:t�1 as input, we obtain a
set of attention weights {agi

t }k
i=1, where k is the

number of attention heads and agi
t is the i-th prob-

ability vector. The probability of the arc between
the new node and the node vj is then computed
by ag

t,j = maxi(a
gi
t,j). Intuitively, each head is in

charge of a set of possible relations (though not ex-
plicitly specified). If certain relations do not exist
between the new node and any existing node, the
probability mass will be assigned to the dummy
node d⇤. The maximum pooling reflects that the
arc should be built once one relation is activated.3

The attention mechanism passes the arc deci-
sions to later layers by the update of the parser
state as follows:

ht = LN(ht + W arc
t�1X

j=0

ag
t,jvj)

3We also found that there may exist more than one relation
between two distinct nodes, however, it rarely happens.

4.4 Concept Prediction
Our Concept Prediction component uses a soft
alignment between words and the new concept.
Concretely, a single-head attention as

t is computed
based on the parser state ht and the sentence rep-
resentation s1:n, where as

t,i denotes the attention
weight of the word wi in the current time step.
This component then updates the parser state with
the alignment information via the following equa-
tion:

ht = LN(ht + W conc
nX

i=1

as
t,isi)

The probability of generating a specific con-
cept c from the concept vocabulary V is calculated
as gen(c|ht) = exp(xc

T ht)/
P

c02V exp(xc0
T ht),

where xc (for c 2 V) denotes the model param-
eters. To address the data sparsity issue in con-
cept prediction, we introduce a copy mechanism
in similar spirit to Gu et al. (2016). Besides gener-
ation, our model can either directly copy an input
token wi (e.g, for entity names) or map wi to one
concept m(wi) according to the alignment statis-
tics4 in the training data (e.g., for “went”, it would
propose go). Formally, the prediction probability
of a concept c is given by:

P (c|ht) =P (copy|ht)
nX

i=1

as
t,i[[wi = c]]

+P (map|ht)
nX

i=1

as
t,i[[m(wi) = c]]

+P (gen|ht)gen(c|ht)

where [[. . .]] is the indicator function. P (copy|ht),
P (map|ht) and P (gen|ht) are the probabilities of
three prediction modes respectively, computed by
a single layer neural network with softmax activa-
tion.

4.5 Relation Classification
Lastly, the Relation Classification component em-
ploys a multi-class classifier for labeling the arcs
detected in the Relation Identification component.
The classifier uses a biaffine function to score each
label, given the head concept representation vi and
the child vector ht as input:

ei
t = hT

t Wvi + UT ht + V T vi + b

4Based on the alignments provided by Liu et al. (2018),
for each word, the most frequently aligned concept (or its
lemma if it has empty alignment) is used for direct mapping.

• Multiple layers of multi-head attention


• Collect the most relevant information for the next expansion
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• One layer of multi-head attention


• The maximum over different heads as the final arc probabilities



Concept Prediction
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• One layer of single-head attention


• A soft alignment to sentence tokens (also used for copy mechanism)
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Figure 5: A single layer of the Recursive Neural Ten-
sor Network. Each dashed box represents one of d-many
slices and can capture a type of influence a child can have
on its parent.
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where W is as defined in the previous models. The
next parent vector p2 in the tri-gram will be com-
puted with the same weights:
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The main advantage over the previous RNN
model, which is a special case of the RNTN when
V is set to 0, is that the tensor can directly relate in-
put vectors. Intuitively, we can interpret each slice
of the tensor as capturing a specific type of compo-
sition.

An alternative to RNTNs would be to make the
compositional function more powerful by adding a
second neural network layer. However, initial exper-
iments showed that it is hard to optimize this model
and vector interactions are still more implicit than in
the RNTN.

4.4 Tensor Backprop through Structure
We describe in this section how to train the RNTN
model. As mentioned above, each node has a

softmax classifier trained on its vector representa-
tion to predict a given ground truth or target vector
t. We assume the target distribution vector at each
node has a 0-1 encoding. If there are C classes, then
it has length C and a 1 at the correct label. All other
entries are 0.

We want to maximize the probability of the cor-
rect prediction, or minimize the cross-entropy error
between the predicted distribution yi 2 RC⇥1 at
node i and the target distribution ti 2 RC⇥1 at that
node. This is equivalent (up to a constant) to mini-
mizing the KL-divergence between the two distribu-
tions. The error as a function of the RNTN parame-
ters ✓ = (V,W,Ws, L) for a sentence is:

E(✓) =
X

i

X

j

tij log y
i
j + �k✓k2 (2)

The derivative for the weights of the softmax clas-
sifier are standard and simply sum up from each
node’s error. We define xi to be the vector at node
i (in the example trigram, the xi 2 Rd⇥1’s are
(a, b, c, p1, p2)). We skip the standard derivative for
Ws. Each node backpropagates its error through to
the recursively used weights V,W . Let �i,s 2 Rd⇥1

be the softmax error vector at node i:

�i,s =
�
W T

s (yi � ti)
�
⌦ f 0(xi),

where ⌦ is the Hadamard product between the two
vectors and f 0 is the element-wise derivative of f
which in the standard case of using f = tanh can
be computed using only f(xi).

The remaining derivatives can only be computed
in a top-down fashion from the top node through the
tree and into the leaf nodes. The full derivative for
V and W is the sum of the derivatives at each of
the nodes. We define the complete incoming error
messages for a node i as �i,com. The top node, in
our case p2, only received errors from the top node’s
softmax. Hence, �p2,com = �p2,s which we can
use to obtain the standard backprop derivative for
W (Goller and Küchler, 1996; Socher et al., 2010).
For the derivative of each slice k = 1, . . . , d, we get:

@Ep2

@V [k]
= �p2,comk


a
p1

� 
a
p1

�T
,

where �p2,comk is just the k’th element of this vector.
Now, we can compute the error message for the two
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The main advantage over the previous RNN
model, which is a special case of the RNTN when
V is set to 0, is that the tensor can directly relate in-
put vectors. Intuitively, we can interpret each slice
of the tensor as capturing a specific type of compo-
sition.

An alternative to RNTNs would be to make the
compositional function more powerful by adding a
second neural network layer. However, initial exper-
iments showed that it is hard to optimize this model
and vector interactions are still more implicit than in
the RNTN.
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be computed using only f(xi).

The remaining derivatives can only be computed
in a top-down fashion from the top node through the
tree and into the leaf nodes. The full derivative for
V and W is the sum of the derivatives at each of
the nodes. We define the complete incoming error
messages for a node i as �i,com. The top node, in
our case p2, only received errors from the top node’s
softmax. Hence, �p2,com = �p2,s which we can
use to obtain the standard backprop derivative for
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The main advantage over the previous RNN
model, which is a special case of the RNTN when
V is set to 0, is that the tensor can directly relate in-
put vectors. Intuitively, we can interpret each slice
of the tensor as capturing a specific type of compo-
sition.

An alternative to RNTNs would be to make the
compositional function more powerful by adding a
second neural network layer. However, initial exper-
iments showed that it is hard to optimize this model
and vector interactions are still more implicit than in
the RNTN.
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be computed using only f(xi).
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where W is as defined in the previous models. The
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The main advantage over the previous RNN
model, which is a special case of the RNTN when
V is set to 0, is that the tensor can directly relate in-
put vectors. Intuitively, we can interpret each slice
of the tensor as capturing a specific type of compo-
sition.

An alternative to RNTNs would be to make the
compositional function more powerful by adding a
second neural network layer. However, initial exper-
iments showed that it is hard to optimize this model
and vector interactions are still more implicit than in
the RNTN.

4.4 Tensor Backprop through Structure
We describe in this section how to train the RNTN
model. As mentioned above, each node has a

softmax classifier trained on its vector representa-
tion to predict a given ground truth or target vector
t. We assume the target distribution vector at each
node has a 0-1 encoding. If there are C classes, then
it has length C and a 1 at the correct label. All other
entries are 0.

We want to maximize the probability of the cor-
rect prediction, or minimize the cross-entropy error
between the predicted distribution yi 2 RC⇥1 at
node i and the target distribution ti 2 RC⇥1 at that
node. This is equivalent (up to a constant) to mini-
mizing the KL-divergence between the two distribu-
tions. The error as a function of the RNTN parame-
ters ✓ = (V,W,Ws, L) for a sentence is:
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The derivative for the weights of the softmax clas-
sifier are standard and simply sum up from each
node’s error. We define xi to be the vector at node
i (in the example trigram, the xi 2 Rd⇥1’s are
(a, b, c, p1, p2)). We skip the standard derivative for
Ws. Each node backpropagates its error through to
the recursively used weights V,W . Let �i,s 2 Rd⇥1
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where ⌦ is the Hadamard product between the two
vectors and f 0 is the element-wise derivative of f
which in the standard case of using f = tanh can
be computed using only f(xi).

The remaining derivatives can only be computed
in a top-down fashion from the top node through the
tree and into the leaf nodes. The full derivative for
V and W is the sum of the derivatives at each of
the nodes. We define the complete incoming error
messages for a node i as �i,com. The top node, in
our case p2, only received errors from the top node’s
softmax. Hence, �p2,com = �p2,s which we can
use to obtain the standard backprop derivative for
W (Goller and Küchler, 1996; Socher et al., 2010).
For the derivative of each slice k = 1, . . . , d, we get:
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• Biaffine Classifier (Dozat and Manning, 2016)
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Figure 5: A single layer of the Recursive Neural Ten-
sor Network. Each dashed box represents one of d-many
slices and can capture a type of influence a child can have
on its parent.

The RNTN uses this definition for computing p1:

p1 = f

 
b
c

�T
V [1:d]


b
c

�
+W


b
c

�!
,

where W is as defined in the previous models. The
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The main advantage over the previous RNN
model, which is a special case of the RNTN when
V is set to 0, is that the tensor can directly relate in-
put vectors. Intuitively, we can interpret each slice
of the tensor as capturing a specific type of compo-
sition.

An alternative to RNTNs would be to make the
compositional function more powerful by adding a
second neural network layer. However, initial exper-
iments showed that it is hard to optimize this model
and vector interactions are still more implicit than in
the RNTN.

4.4 Tensor Backprop through Structure
We describe in this section how to train the RNTN
model. As mentioned above, each node has a

softmax classifier trained on its vector representa-
tion to predict a given ground truth or target vector
t. We assume the target distribution vector at each
node has a 0-1 encoding. If there are C classes, then
it has length C and a 1 at the correct label. All other
entries are 0.

We want to maximize the probability of the cor-
rect prediction, or minimize the cross-entropy error
between the predicted distribution yi 2 RC⇥1 at
node i and the target distribution ti 2 RC⇥1 at that
node. This is equivalent (up to a constant) to mini-
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tions. The error as a function of the RNTN parame-
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The derivative for the weights of the softmax clas-
sifier are standard and simply sum up from each
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the nodes. We define the complete incoming error
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our case p2, only received errors from the top node’s
softmax. Hence, �p2,com = �p2,s which we can
use to obtain the standard backprop derivative for
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The main advantage over the previous RNN
model, which is a special case of the RNTN when
V is set to 0, is that the tensor can directly relate in-
put vectors. Intuitively, we can interpret each slice
of the tensor as capturing a specific type of compo-
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An alternative to RNTNs would be to make the
compositional function more powerful by adding a
second neural network layer. However, initial exper-
iments showed that it is hard to optimize this model
and vector interactions are still more implicit than in
the RNTN.
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node has a 0-1 encoding. If there are C classes, then
it has length C and a 1 at the correct label. All other
entries are 0.

We want to maximize the probability of the cor-
rect prediction, or minimize the cross-entropy error
between the predicted distribution yi 2 RC⇥1 at
node i and the target distribution ti 2 RC⇥1 at that
node. This is equivalent (up to a constant) to mini-
mizing the KL-divergence between the two distribu-
tions. The error as a function of the RNTN parame-
ters ✓ = (V,W,Ws, L) for a sentence is:

E(✓) =
X

i

X

j

tij log y
i
j + �k✓k2 (2)

The derivative for the weights of the softmax clas-
sifier are standard and simply sum up from each
node’s error. We define xi to be the vector at node
i (in the example trigram, the xi 2 Rd⇥1’s are
(a, b, c, p1, p2)). We skip the standard derivative for
Ws. Each node backpropagates its error through to
the recursively used weights V,W . Let �i,s 2 Rd⇥1

be the softmax error vector at node i:

�i,s =
�
W T

s (yi � ti)
�
⌦ f 0(xi),

where ⌦ is the Hadamard product between the two
vectors and f 0 is the element-wise derivative of f
which in the standard case of using f = tanh can
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model, which is a special case of the RNTN when
V is set to 0, is that the tensor can directly relate in-
put vectors. Intuitively, we can interpret each slice
of the tensor as capturing a specific type of compo-
sition.

An alternative to RNTNs would be to make the
compositional function more powerful by adding a
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iments showed that it is hard to optimize this model
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our case p2, only received errors from the top node’s
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model, which is a special case of the RNTN when
V is set to 0, is that the tensor can directly relate in-
put vectors. Intuitively, we can interpret each slice
of the tensor as capturing a specific type of compo-
sition.

An alternative to RNTNs would be to make the
compositional function more powerful by adding a
second neural network layer. However, initial exper-
iments showed that it is hard to optimize this model
and vector interactions are still more implicit than in
the RNTN.
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it has length C and a 1 at the correct label. All other
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The derivative for the weights of the softmax clas-
sifier are standard and simply sum up from each
node’s error. We define xi to be the vector at node
i (in the example trigram, the xi 2 Rd⇥1’s are
(a, b, c, p1, p2)). We skip the standard derivative for
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where ⌦ is the Hadamard product between the two
vectors and f 0 is the element-wise derivative of f
which in the standard case of using f = tanh can
be computed using only f(xi).

The remaining derivatives can only be computed
in a top-down fashion from the top node through the
tree and into the leaf nodes. The full derivative for
V and W is the sum of the derivatives at each of
the nodes. We define the complete incoming error
messages for a node i as �i,com. The top node, in
our case p2, only received errors from the top node’s
softmax. Hence, �p2,com = �p2,s which we can
use to obtain the standard backprop derivative for
W (Goller and Küchler, 1996; Socher et al., 2010).
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The main advantage over the previous RNN
model, which is a special case of the RNTN when
V is set to 0, is that the tensor can directly relate in-
put vectors. Intuitively, we can interpret each slice
of the tensor as capturing a specific type of compo-
sition.

An alternative to RNTNs would be to make the
compositional function more powerful by adding a
second neural network layer. However, initial exper-
iments showed that it is hard to optimize this model
and vector interactions are still more implicit than in
the RNTN.
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sifier are standard and simply sum up from each
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vectors and f 0 is the element-wise derivative of f
which in the standard case of using f = tanh can
be computed using only f(xi).

The remaining derivatives can only be computed
in a top-down fashion from the top node through the
tree and into the leaf nodes. The full derivative for
V and W is the sum of the derivatives at each of
the nodes. We define the complete incoming error
messages for a node i as �i,com. The top node, in
our case p2, only received errors from the top node’s
softmax. Hence, �p2,com = �p2,s which we can
use to obtain the standard backprop derivative for
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V is set to 0, is that the tensor can directly relate in-
put vectors. Intuitively, we can interpret each slice
of the tensor as capturing a specific type of compo-
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An alternative to RNTNs would be to make the
compositional function more powerful by adding a
second neural network layer. However, initial exper-
iments showed that it is hard to optimize this model
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V is set to 0, is that the tensor can directly relate in-
put vectors. Intuitively, we can interpret each slice
of the tensor as capturing a specific type of compo-
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An alternative to RNTNs would be to make the
compositional function more powerful by adding a
second neural network layer. However, initial exper-
iments showed that it is hard to optimize this model
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V is set to 0, is that the tensor can directly relate in-
put vectors. Intuitively, we can interpret each slice
of the tensor as capturing a specific type of compo-
sition.

An alternative to RNTNs would be to make the
compositional function more powerful by adding a
second neural network layer. However, initial exper-
iments showed that it is hard to optimize this model
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node. This is equivalent (up to a constant) to mini-
mizing the KL-divergence between the two distribu-
tions. The error as a function of the RNTN parame-
ters ✓ = (V,W,Ws, L) for a sentence is:

E(✓) =
X

i

X

j

tij log y
i
j + �k✓k2 (2)

The derivative for the weights of the softmax clas-
sifier are standard and simply sum up from each
node’s error. We define xi to be the vector at node
i (in the example trigram, the xi 2 Rd⇥1’s are
(a, b, c, p1, p2)). We skip the standard derivative for
Ws. Each node backpropagates its error through to
the recursively used weights V,W . Let �i,s 2 Rd⇥1

be the softmax error vector at node i:

�i,s =
�
W T

s (yi � ti)
�
⌦ f 0(xi),

where ⌦ is the Hadamard product between the two
vectors and f 0 is the element-wise derivative of f
which in the standard case of using f = tanh can
be computed using only f(xi).

The remaining derivatives can only be computed
in a top-down fashion from the top node through the
tree and into the leaf nodes. The full derivative for
V and W is the sum of the derivatives at each of
the nodes. We define the complete incoming error
messages for a node i as �i,com. The top node, in
our case p2, only received errors from the top node’s
softmax. Hence, �p2,com = �p2,s which we can
use to obtain the standard backprop derivative for
W (Goller and Küchler, 1996; Socher et al., 2010).
For the derivative of each slice k = 1, . . . , d, we get:

@Ep2

@V [k]
= �p2,comk


a
p1

� 
a
p1

�T
,

where �p2,comk is just the k’th element of this vector.
Now, we can compute the error message for the two

ct

d*

d*

?

d*

Gt

Once Again



Training and Inference

where W, U, V, b are model parameters. As sug-
gested by Dozat and Manning (2016), we project
vi and ht to a lower dimension for reducing the
computation cost and avoiding the overfitting of
the model. The label probabilities are computed
by a softmax function over all label scores.

4.6 Reentrancies

AMR reentrancy is employed when a node partici-
pates in multiple semantic relations (with multiple
parent nodes), and that is why AMRs are graphs,
rather than trees. The reentrancies are often hard
to treat. While previous work often either remove
them (Guo and Lu, 2018) or relies on rule-based
restoration in the postprocessing stage (Lyu and
Titov, 2018; van Noord and Bos, 2017), our model
provides a new and principled way to deal with
reentrancies. In our approach, when a new node
is generated, all its connections to already existing
nodes are determined by the multi-head attention.
For example, for a node with k parent nodes, k dif-
ferent heads will point to the those parent nodes
respectively. For a better understanding of our
model, a pseudocode is presented in Algorithm 1.

4.7 Training and Inference

Our model is trained to maximize the log likeli-
hood of the gold AMR graphs given sentences, i.e.
log P (G|w), which can be factorized as:

log P (G|w) =
mX

t=1

✓
log P (ct|Gt�1,w)

+
X

i2pred(t)

log P (arcit|Gt�1,w)

+
X

i2pred(t)

log P (relarcit |Gt�1,w)

◆

where m is the total number of vertices. The set
of predecessor nodes of ct is denoted as pred(t).
arcit denotes the arc between ci and ct, and
relarcit indicates the arc label (relation type).

As mentioned, GSP is an autoregressive model,
such as seq2seq models and transition models, but
it factors the distribution according to a top-down
graph structure rather than a depth-first traversal or
a left-to-right chain. Meanwhile, GSP has a clear
separation of node, arc and relation label prob-
abilities, interacting in a more interpretable and
tighten manner.

Algorithm 1 Graph Spanning based Parsing
Input: the input sentence w = (w1, w2, . . . , wn)
Output: the AMR graph G corresponds to w.

3 Learning Sentence Representation
1: w = (w0 = ⇤) + (w1, w2, . . . , wn)
2: s0, s1, s2, . . . , sn = Transformer(w)

3 Initialization
3: initialize the graph G0 (c0 = d⇤)
4: initialize time step t = 1

3 Entering Main Spanning Loop
5: while True do
6: h0, . . . , vt�1 = Transformer(c0:t�1)
7: ht = Focus Selection (s0, v0:t�1, s1:n)
8: ht = Relation Identification (ht, v0:t�1)
8: decide the parents nodes pred(t) of ct

9: ht = Concept Prediction (ht, s1:n)
9: decide the node type of ct

10: if ct == ↵ then
11: break
12: end if
13: for i 2 pred(t) do
14: Relation Classification (ht, vi)
14: decide the edge type between ct and ci

15: end for
16: update Gt�1 to Gt

17: end while
18: return Gt�1

At the operational or testing time, the pre-
diction for the input w is obtained via Ĝ =
arg maxG0 P (G0|w). Rather than iterating over
all possible graphs, we adopt a beam search to
approximate the best graph. Specifically, for
each partially constructed graph, we only consider
the top-K concepts obtaining the best single-step
probability (a product of the corresponding con-
cept, arc, and relation label probability), where K
is the beam size. Only the best K graphs at each
time step are kept for the next expansion.

5 Experiments

5.1 Setup
We focus on the most recent LDC2017T10
dataset, as it is the largest AMR corpus. It consists
of 36521, 1368, and 1371 sentences in the train-
ing, development, and testing sets respectively.

We use Stanford CoreNLP (Manning et al.,
2014) for text preprocessing, including tokeniza-
tion, lemmatization, part-of-speech, and named-
entity tagging. The input for sentence encoder

• Autoregressive model


• Distribution Factored according 
to a top-down graph structure


• Clear separation of node, arc 
and relation label probabilities


• Beam search (top K graphs)



Setup
• The latest AMR sembank (LDC2017T10)


• 36521, 1368, and 1371 sentences in the training, 
development, and testing sets respectively



Graph Re-categorization

• Non-trivial. It requires exhaustive screening and expert-
level manual efforts.


• The precise set of re-categorization rules differs among 
different models.

Even with hundreds more!

temporal-quantity
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rate-entity-91 year
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1
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Evaluation Metrics 
• Smatch (Cai and Knight, 2013) : seeks the maximum 

overlap after transforming graph into triples. 


• Smatch-weighted: assigns more weights to triples stay 
closer to the root. 


• Smatch-core: only compares the subgraphs close to the 
root.


• Complete-match (CM): completely correct rate


• Root-accuracy (RA): root accuracy 



Case Study

Model Graph Smatch(%) RA(%) CM(%)Re-ca. weighted core ordinary
Buys and Blunsom (2017) No - - 61.9 - -

van Noord and Bos (2017) + 100K No 68.8 67.6 71.0 75.8 10.2
Guo and Lu (2018) Yes 63.5 62.3 69.8 63.6 9.4

Lyu and Titov (2018) Yes 66.6 67.1 74.4 59.1 10.2
Groschwitz et al. (2018) Yes - - 71.0 - -

Ours No 71.3 70.2 73.2 76.9 11.6

Table 1: Comparison with state-of-the-art methods (results on the test set). Results relying on heuristic rules for
graph re-categorization are marked “Yes” in the Graph Re-ca. column.
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Figure 4: Case study.

method in capturing the core ideas. Besides, our
model achieves the highest root-accuracy (RA)
and complete-match (CM), which further confirms
the usefulness of a global view and the core se-
mantic first principle.

Even evaluated by the ordinary Smatch met-
ric, our model yields better results than all previ-
ously reported models with the exception of Lyu
and Titov (2018), which relies on a tremendous
amount of manual heuristics for designing rules
for graph re-categorization and adopts a pipeline
approach. Note that our parser constructs the
AMR graph in an end-to-end fashion with a bet-
ter (quadratic) time complexity.

We present a case study in Figure 4 with com-
parison to the output of Lyu and Titov (2018)’s
parser. As seen, both parsers make some mis-
takes. Specifically, our method fails to iden-
tify the concept generated-01. While Lyu
and Titov (2018)’s parser successfully identifies
it, their parser mistakenly treats it as the root
of the whole AMR. It leads to a serious draw-
back of making the sentence meaning be inter-
preted in a wrong way. In contrast, our method
shows a strong capacity in capturing the main idea
“the solution is about some patterns and a bal-

ance”. However, on the ordinary Smatch met-
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Figure 5: Smatch scores with different root distances.
vN’17 is van Noord and Bos (2017)’s parser with 100K
additional training pairs. GL’18 is Guo and Lu (2018)’s
parser. L’18 is Lyu and Titov (2018)’s parser.

ric, their graph obtains a higher score (68% vs.
66%), which indicates that the ordinary Smatch
is not a proper metric for evaluating the qual-
ity of capturing core semantics. If we adopt the
Smatch-weighted metric, our method achieves a
better score i.e. 74% vs. 61%.

5.3 More Results

To reveal our parser’s ability for grasping mean-
ings at different levels of granularity, we plot
the Smatch-core scores in Figure 5 by varying

• Smatch-weighted: 74% vs. 61% Smatch-ordinary: 68% vs. 66%

• The ordinary Smatch is not a proper metric for evaluating the quality of 

capturing core semantics.

Lyu and Titov, 2018



Compared Methods

• Seq2seq-based: Buys and Blunsom (2017), van Noord 
and Bos (2017) 


• Transition-based: Guo and Lu (2018)


• Graph-based: Lyu and Titov (2018)


• AM algebra: Groschwitz et al. (2018)



Results and Analysis
Model Graph Smatch(%) RA(%) CM(%)Re-ca. weighted core ordinary

Buys and Blunsom (2017) No - - 61.9 - -
van Noord and Bos (2017) + 100K No 68.8 67.6 71.0 75.8 10.2

Guo and Lu (2018) Yes 63.5 62.3 69.8 63.6 9.4
Lyu and Titov (2018) Yes 66.6 67.1 74.4 59.1 10.2

Groschwitz et al. (2018) Yes - - 71.0 - -
Ours No 71.3 70.2 73.2 76.9 11.6

Table 1: Comparison with state-of-the-art methods (results on the test set). Results relying on heuristic rules for
graph re-categorization are marked “Yes” in the Graph Re-ca. column.
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method in capturing the core ideas. Besides, our
model achieves the highest root-accuracy (RA)
and complete-match (CM), which further confirms
the usefulness of a global view and the core se-
mantic first principle.

Even evaluated by the ordinary Smatch met-
ric, our model yields better results than all previ-
ously reported models with the exception of Lyu
and Titov (2018), which relies on a tremendous
amount of manual heuristics for designing rules
for graph re-categorization and adopts a pipeline
approach. Note that our parser constructs the
AMR graph in an end-to-end fashion with a bet-
ter (quadratic) time complexity.

We present a case study in Figure 4 with com-
parison to the output of Lyu and Titov (2018)’s
parser. As seen, both parsers make some mis-
takes. Specifically, our method fails to iden-
tify the concept generated-01. While Lyu
and Titov (2018)’s parser successfully identifies
it, their parser mistakenly treats it as the root
of the whole AMR. It leads to a serious draw-
back of making the sentence meaning be inter-
preted in a wrong way. In contrast, our method
shows a strong capacity in capturing the main idea
“the solution is about some patterns and a bal-

ance”. However, on the ordinary Smatch met-
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Figure 5: Smatch scores with different root distances.
vN’17 is van Noord and Bos (2017)’s parser with 100K
additional training pairs. GL’18 is Guo and Lu (2018)’s
parser. L’18 is Lyu and Titov (2018)’s parser.

ric, their graph obtains a higher score (68% vs.
66%), which indicates that the ordinary Smatch
is not a proper metric for evaluating the qual-
ity of capturing core semantics. If we adopt the
Smatch-weighted metric, our method achieves a
better score i.e. 74% vs. 61%.

5.3 More Results

To reveal our parser’s ability for grasping mean-
ings at different levels of granularity, we plot
the Smatch-core scores in Figure 5 by varying

• In terms of parser’s quality on capturing core semantics, our 
method significantly outperforms all other methods. 


• Competitive results to state-of-the-art even without graph re-
categorization (state-of-the-art in the sense that no graph re-ca.).


• RA and CM further confirm the usefulness of a global view and the 
core semantic first principle



Results and Analysis
Sm
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• Our method has a clear advantage in capturing the core 
ideas.
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