Core Semantic First: A Top-down Approach for AMR Parsing

Deng Cai and Wai Lam

The Chinese University of Hong Kong

EMNLP-IJCNLP2019

Background

During a time of prosperity and happiness, such a big earthquake suddenly struck.

- Abstract Meaning Representation (AMR)
 - rooted, labeled, directed graph
 - nodes represent concepts
 - edges represent relations

Challenges

- No explicit alignment of graph nodes and sentence tokens
- Frequent reentrancies and non-projective arcs
- Large and sparse concept vocabulary

Existing Work

- **Graph-based parsers** (Flanigan et al., 2014; Lyu and Titov, 2018, Zhang et al., 2019)
 - pipeline design for concept identification and relation prediction
- **Transition-based parsers** (Wang et al., 2016; Damonte et al., 2017; Ballesteros and Al-Onaizan, 2017; Guo and Lu, 2018; Liu et al., 2018; Wang and Xue, 2017)
 - process a sentence from left-to-right and constructs the graph incrementally
- Seq2Seq-based parsers (Barzdins and Gosko, 2016; Konstas et al., 2017; van Noord and Bos, 2017)
 - output a linearization (depth-first traversal) of the AMR graph.

Motivation

- Graph-based parsers
 - misses the the interactions between individual decisions
- Transition-based & Seq2Seq-based parsers
 - suffers from error propagation, where later decisions can easily go awry.
- Our framework
 - has a global view and
 - a priority for capturing the main ideas first

Motivation

Core Semantic First

An earthquake suddenly struck at a particular time. During a time of prosperity and happiness, such a big earthquake suddenly struck. During a time of prosperity and happiness, such a big earthquake suddenly struck.

Graph Spanning

Overview

- Graph spanning-based Parsing
 - starts from the root
 - spans the nodes by the distance to the root
 - at each step, a new node and its connections to existing nodes will be jointly predicted.

Comparisons

- versus Graph-based Methods:
 - Captures more complicated intra-graph interactions
- versus Transition-based Methods:
 - Removes the left-to-right restriction
 - Avoids sophisticated oracle design for handling the complexity of AMR graphs
- versus Seq2seq-based Methods:
 - Makes direct use of the graph structure information

At time step t

 $W_1 \quad W_2 \quad \cdots \quad W_n$

A dummy node we used to initialize the graph.

Sentence & Graph Encoders

- Transformer Encoders
- Graph is treated as a sequence of nodes for simplicity.

Focus Selection

- Multiple layers of multi-head attention $\begin{aligned} x_{t,1}^{l+1} &= \text{LN}(h_t^l + T_1^{l+1}(h_t^l, s_{1:n})) \\ x_{t,2}^{l+1} &= \text{LN}(x_{t,1}^{l+1} + T_2^{l+1}(x_{t,1}^{l+1}, v_{0:t-1})) \\ h_t^{l+1} &= \max(x_{t,2}^{l+1}W_1^{l+1} + b_1^{l+1})W_2^{l+1} + b_2^{l+1} \end{aligned}$
- Collect the most relevant information for the next expansion

Relation Identification

• The maximum over different heads as the final arc probabilities

Concept Prediction

• One layer of single-head attention

A soft alignment to sentence tokens (also used for copy mechanism)

• Biaffine Classifier (Dozat and Manning, 2016)

Architecture

Once Again

Training and Inference

- Autoregressive model
- Distribution Factored according to a top-down graph structure
- Clear separation of node, arc and relation label probabilities
- Beam search (top K graphs)

$$\log P(G|\mathbf{w}) = \sum_{t=1}^{m} \left(\log P(c_t|G_{t-1}, \mathbf{w}) + \sum_{i \in pred(t)} \log P(arc_{it}|G_{t-1}, \mathbf{w}) + \sum_{i \in pred(t)} \log P(rel_{arc_{it}}|G_{t-1}, \mathbf{w}) \right)$$

Setup

- The latest AMR sembank (LDC2017T10)
- 36521, 1368, and 1371 sentences in the training, development, and testing sets respectively

Graph Re-categorization

- Non-trivial. It requires exhaustive screening and expertlevel manual efforts.
- The precise set of re-categorization rules differs among different models.

Evaluation Metrics

- Smatch (Cai and Knight, 2013) : seeks the maximum overlap after transforming graph into triples.
- Smatch-weighted: assigns more weights to triples stay closer to the root.
- Smatch-core: only compares the subgraphs close to the root.
- Complete-match (CM): completely correct rate
- Root-accuracy (RA): root accuracy

Case Study

Input: *The solution is functional human patterns and a balance between transport system capacity and land use generated travel demand.*

Lyu and Titov, 2018

L'18 GL'18 vN'17 Ours Smatch-weighted: 74% vs. 61% Smatch&ordinary: 68% vs. 66% lacksquareThe ordinary Smatch is not a proper metric for evaluating the quality of lacksquareSmatch-core capturing core semantics.

0.68

0.61

Compared Methods

- Seq2seq-based: Buys and Blunsom (2017), van Noord and Bos (2017)
- Transition-based: Guo and Lu (2018)
- Graph-based: Lyu and Titov (2018)
- AM algebra: Groschwitz et al. (2018)

Results and Analysis

Model	Graph	Smatch(%)			$\mathbf{D} \Lambda (\mathcal{O}_{2})$	CM(0/2)
	Re-ca.	weighted	core	ordinary	$\mathbf{RA}(\mathcal{N})$	
Buys and Blunsom (2017)	No	-	-	61.9	-	-
van Noord and Bos (2017) + 100K	No	68.8	67.6	71.0	75.8	10.2
Guo and Lu (2018)	Yes	63.5	62.3	69.8	63.6	9.4
Lyu and Titov (2018)	Yes	66.6	67.1	74.4	59.1	10.2
Groschwitz et al. (2018)	Yes	-	-	71.0	-	-
Ours	No	71.3	70.2	73.2	76.9	11.6

- In terms of parser's quality on capturing core semantics, our Input: The solution is functional human patterns and a balance between transport system capacity and land use generated travel demand. method significantly outperforms all other methods. ARG0 ARG1 ARG0 ARG1 of
- Competitive results to state of the art even without graphs and the balance-of the art even without graphs and the balance-of the art even without graphs and the balance-of the balance

★ ARG0 core semantie first principle human use-01 capacity use-01 transport-0 ARG1 op1-of mod mod **♦**ARG1 land transport between system transportland

Results and Analysis

Maximum Root Distance

• Our method has a clear advantage in capturing the core ideas.

Core Semantic First: A Top-down Approach for AMR Parsing

Thanks!

Deng Cai and Wai Lam The Chinese University of Hong Kong

https://github.com/jcyk/AMR-parser thisisjcykcd@gmail.com