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Background
• Abstract Meaning Representation (AMR)


• rooted, labeled, and directed acyclic graph


• nodes represent concepts


• edges represent relations strike-01
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such a big earthquake suddenly struck. 
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Background

• Abstract Meaning Representation (AMR)


• Named Entity Recognition


• Word Sense Disambiguation


• Semantic Role Labeling


• Coreference Resolution


• …

During a time of prosperity and happiness, 
such a big earthquake suddenly struck. 
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Challenges

During a time of prosperity and happiness, 
such a big earthquake suddenly struck. 
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• Concept Prediction:


• No explicit alignment of graph nodes and sentence tokens


• Large and sparse concept vocabulary vs. Limited training data


• Relation Prediction:


• Frequent reentrancies and non-projective arcs

AMR Parsing
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Existing Work
• Two-stage Parsing (Flanigan et al., 2014; Lyu and Titov, 2018; Zhang et al., 

2019a)

• first predict all concepts

• then predict all relations 


• One-stage Parsing (Wang et al., 2016; Damonte et al., 2017; Ballesteros and 
Al-Onaizan, 2017; Peng et al., 2017; Guo and Lu, 2018; Liu et al., 2018; Wang 
and Xue, 2017; Naseem et al., 2019; Barzdins and Gosko, 2016; Konstas et al., 
2017; van Noord and Bos, 2017; Peng et al., 2018; Cai and Lam, 2019; Zhang et 
al., 2019b) 

• Construct a parse graph incrementally


• Grammar-based Parsing (Peng et al., 2015;Pust et al., 2015;Artzi et al., 2015; 
Groschwitz et al., 2018; Lindemann et al., 2019)
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Existing Work
• Two-stage Parsing (Flanigan et al., 2014; Lyu and Titov, 2018; Zhang et al., 2019a)

• Pipeline: concept prediction -> relation prediction


• One-stage Parsing

• Transition-based (Wang et al., 2016; Damonte et al., 2017; Ballesteros and Al-

Onaizan, 2017; Peng et al., 2017; Guo and Lu, 2018; Liu et al., 2018; Wang and Xue, 2017; 
Naseem et al., 2019)

• Insert node and build edge sequentially

• Seq2seq-based (Barzdins and Gosko, 2016; Konstas et al., 2017; van Noord and Bos, 

2017; Peng et al., 2018)

• Nodes and edges are mixed in the same output space


• Graph-based (Cai and Lam, 2019; Zhang et al., 2019b)

• A new node and its connections to existing nodes are jointly decoded in order or in 
parallel.
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Motivation

Concept Prediction Relation Prediction

Our hypothesis for unsatisfactory parsing accuracy:

The lack of the modeling capability of the interactions between concept 
prediction and relation prediction
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Figure 2: Overview of the dual graph-sequence iterative inference for AMR parsing. Given the current graph Gi

and input sequence W . The inference starts with an initial concept decision x0 and follows the inference chain
x0 ! f(Gi, x0) ! y1 ! g(W, y1) ! x1 ! f(Gi, x1) ! y2 ! g(W, y2) ! · · · . The details of f and g are
shown in red and blue boxes, where nodes in graph and tokens in sequence are selected via attention mechanisms.

other hand, in Figure 1(b), a polarity attribute of
the event go-2 is constructed, which is triggered
by the word “not” in the sentence.

We note that the answer to one of the questions
can help answer the other. For instance, if we
have decided to render the word “not” to the graph,
then we will consider adding an edge labeled as
polarity, and finally determine its attachment
to the existing event go-2 (rather than an edge
labeled ARG0 to the same event go-2, though it
is also present in the golden graph). On the other
hand, if we have decided to find the subject (ARG0
relation) of the action go-02, we are confident to
locate the word “boy” instead of function words
like “not” or “must”, thus unambiguously predict
the right concept boy. Another possible circum-
stance is that we may make a mistake trying to ask
something that is not present in the sentence (e.g.,
the destination of the go-02 action). This attempt
will be rejected by a review of the sentence. The
rationale is that literally we cannot find the destina-
tion information in the sentence. Similarly, if we
mistakenly propose to abstract some parts of the
sentence that are not ready for construction yet, the
proposal will be rejected by another inspection on
the graph since that there is nowhere to place such
a new concept.

We believe the mutual causalities, as described
above, are useful for action disambiguation and
harmonious decision making, which eventually re-
sult in more accurate parses. We formulate AMR
parsing as a series of dual graph-sequence deci-
sions and design an iterative inference approach

to tackle each of them. It is sort of analogous to
the cognition procedure of a person, who might
first notice part of the important information in
one side (graph or sequence), then try to confirm
her decision at the other side, which could just re-
fute her former hypothesis and propose a new one,
and finally converge to a conclusion after multiple
rounds of reasoning.

4 Proposed Model

4.1 Overview

Formally, the parsing model consists of a series of
graph expansion procedures {G0 ! . . . ! Gi !
. . .}, starting from an empty graph G0. In each
turn of expansion, the following iterative inference
process is performed:

yit = g(Gi, xit),

xit+1 = f(W, yit),

where W,Gi are the input sequence and the current
semantic graph respectively. g(·), f(·) seek where
to construct (edge prediction) and what to abstract
(node prediction) respectively, and xit, y

i
t are the

t-th graph hypothesis (where to construct) and t-th
sequence hypothesis (what to abstract) for the i-th
expansion step respectively. For clarity, we may
drop the superscript i in the following descriptions.

Figure 2 depicts an overview of the graph-
sequence iterative inference process. Our model
has four main components: (1) Sequence Encoder,
which generates a set of text memories (per token)
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and input sequence W . The inference starts with an initial concept decision x0 and follows the inference chain
x0 ! f(Gi, x0) ! y1 ! g(W, y1) ! x1 ! f(Gi, x1) ! y2 ! g(W, y2) ! · · · . The details of f and g are
shown in red and blue boxes, where nodes in graph and tokens in sequence are selected via attention mechanisms.

other hand, in Figure 1(b), a polarity attribute of
the event go-2 is constructed, which is triggered
by the word “not” in the sentence.

We note that the answer to one of the questions
can help answer the other. For instance, if we
have decided to render the word “not” to the graph,
then we will consider adding an edge labeled as
polarity, and finally determine its attachment
to the existing event go-2 (rather than an edge
labeled ARG0 to the same event go-2, though it
is also present in the golden graph). On the other
hand, if we have decided to find the subject (ARG0
relation) of the action go-02, we are confident to
locate the word “boy” instead of function words
like “not” or “must”, thus unambiguously predict
the right concept boy. Another possible circum-
stance is that we may make a mistake trying to ask
something that is not present in the sentence (e.g.,
the destination of the go-02 action). This attempt
will be rejected by a review of the sentence. The
rationale is that literally we cannot find the destina-
tion information in the sentence. Similarly, if we
mistakenly propose to abstract some parts of the
sentence that are not ready for construction yet, the
proposal will be rejected by another inspection on
the graph since that there is nowhere to place such
a new concept.

We believe the mutual causalities, as described
above, are useful for action disambiguation and
harmonious decision making, which eventually re-
sult in more accurate parses. We formulate AMR
parsing as a series of dual graph-sequence deci-
sions and design an iterative inference approach

to tackle each of them. It is sort of analogous to
the cognition procedure of a person, who might
first notice part of the important information in
one side (graph or sequence), then try to confirm
her decision at the other side, which could just re-
fute her former hypothesis and propose a new one,
and finally converge to a conclusion after multiple
rounds of reasoning.

4 Proposed Model

4.1 Overview

Formally, the parsing model consists of a series of
graph expansion procedures {G0 ! . . . ! Gi !
. . .}, starting from an empty graph G0. In each
turn of expansion, the following iterative inference
process is performed:

yit = g(Gi, xit),

xit+1 = f(W, yit),

where W,Gi are the input sequence and the current
semantic graph respectively. g(·), f(·) seek where
to construct (edge prediction) and what to abstract
(node prediction) respectively, and xit, y

i
t are the

t-th graph hypothesis (where to construct) and t-th
sequence hypothesis (what to abstract) for the i-th
expansion step respectively. For clarity, we may
drop the superscript i in the following descriptions.

Figure 2 depicts an overview of the graph-
sequence iterative inference process. Our model
has four main components: (1) Sequence Encoder,
which generates a set of text memories (per token)
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Model Components

• Sequence Encoder


• Graph Encoder


• Relation Solver


• Concept Solver
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and input sequence W . The inference starts with an initial concept decision x0 and follows the inference chain
x0 ! f(Gi, x0) ! y1 ! g(W, y1) ! x1 ! f(Gi, x1) ! y2 ! g(W, y2) ! · · · . The details of f and g are
shown in red and blue boxes, where nodes in graph and tokens in sequence are selected via attention mechanisms.

other hand, in Figure 1(b), a polarity attribute of
the event go-2 is constructed, which is triggered
by the word “not” in the sentence.

We note that the answer to one of the questions
can help answer the other. For instance, if we
have decided to render the word “not” to the graph,
then we will consider adding an edge labeled as
polarity, and finally determine its attachment
to the existing event go-2 (rather than an edge
labeled ARG0 to the same event go-2, though it
is also present in the golden graph). On the other
hand, if we have decided to find the subject (ARG0
relation) of the action go-02, we are confident to
locate the word “boy” instead of function words
like “not” or “must”, thus unambiguously predict
the right concept boy. Another possible circum-
stance is that we may make a mistake trying to ask
something that is not present in the sentence (e.g.,
the destination of the go-02 action). This attempt
will be rejected by a review of the sentence. The
rationale is that literally we cannot find the destina-
tion information in the sentence. Similarly, if we
mistakenly propose to abstract some parts of the
sentence that are not ready for construction yet, the
proposal will be rejected by another inspection on
the graph since that there is nowhere to place such
a new concept.

We believe the mutual causalities, as described
above, are useful for action disambiguation and
harmonious decision making, which eventually re-
sult in more accurate parses. We formulate AMR
parsing as a series of dual graph-sequence deci-
sions and design an iterative inference approach

to tackle each of them. It is sort of analogous to
the cognition procedure of a person, who might
first notice part of the important information in
one side (graph or sequence), then try to confirm
her decision at the other side, which could just re-
fute her former hypothesis and propose a new one,
and finally converge to a conclusion after multiple
rounds of reasoning.

4 Proposed Model

4.1 Overview

Formally, the parsing model consists of a series of
graph expansion procedures {G0 ! . . . ! Gi !
. . .}, starting from an empty graph G0. In each
turn of expansion, the following iterative inference
process is performed:

yit = g(Gi, xit),

xit+1 = f(W, yit),

where W,Gi are the input sequence and the current
semantic graph respectively. g(·), f(·) seek where
to construct (edge prediction) and what to abstract
(node prediction) respectively, and xit, y

i
t are the

t-th graph hypothesis (where to construct) and t-th
sequence hypothesis (what to abstract) for the i-th
expansion step respectively. For clarity, we may
drop the superscript i in the following descriptions.

Figure 2 depicts an overview of the graph-
sequence iterative inference process. Our model
has four main components: (1) Sequence Encoder,
which generates a set of text memories (per token)
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and input sequence W . The inference starts with an initial concept decision x0 and follows the inference chain
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other hand, in Figure 1(b), a polarity attribute of
the event go-2 is constructed, which is triggered
by the word “not” in the sentence.

We note that the answer to one of the questions
can help answer the other. For instance, if we
have decided to render the word “not” to the graph,
then we will consider adding an edge labeled as
polarity, and finally determine its attachment
to the existing event go-2 (rather than an edge
labeled ARG0 to the same event go-2, though it
is also present in the golden graph). On the other
hand, if we have decided to find the subject (ARG0
relation) of the action go-02, we are confident to
locate the word “boy” instead of function words
like “not” or “must”, thus unambiguously predict
the right concept boy. Another possible circum-
stance is that we may make a mistake trying to ask
something that is not present in the sentence (e.g.,
the destination of the go-02 action). This attempt
will be rejected by a review of the sentence. The
rationale is that literally we cannot find the destina-
tion information in the sentence. Similarly, if we
mistakenly propose to abstract some parts of the
sentence that are not ready for construction yet, the
proposal will be rejected by another inspection on
the graph since that there is nowhere to place such
a new concept.

We believe the mutual causalities, as described
above, are useful for action disambiguation and
harmonious decision making, which eventually re-
sult in more accurate parses. We formulate AMR
parsing as a series of dual graph-sequence deci-
sions and design an iterative inference approach

to tackle each of them. It is sort of analogous to
the cognition procedure of a person, who might
first notice part of the important information in
one side (graph or sequence), then try to confirm
her decision at the other side, which could just re-
fute her former hypothesis and propose a new one,
and finally converge to a conclusion after multiple
rounds of reasoning.

4 Proposed Model

4.1 Overview

Formally, the parsing model consists of a series of
graph expansion procedures {G0 ! . . . ! Gi !
. . .}, starting from an empty graph G0. In each
turn of expansion, the following iterative inference
process is performed:

yit = g(Gi, xit),

xit+1 = f(W, yit),

where W,Gi are the input sequence and the current
semantic graph respectively. g(·), f(·) seek where
to construct (edge prediction) and what to abstract
(node prediction) respectively, and xit, y

i
t are the

t-th graph hypothesis (where to construct) and t-th
sequence hypothesis (what to abstract) for the i-th
expansion step respectively. For clarity, we may
drop the superscript i in the following descriptions.

Figure 2 depicts an overview of the graph-
sequence iterative inference process. Our model
has four main components: (1) Sequence Encoder,
which generates a set of text memories (per token)
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Figure 3: Multi-head attention for relation identifica-
tion. At left is the attention matrix, where each column
corresponds to a unique attention head, and each row
corresponds to an existing node.

set of relation types. For each attention head, it
will point to a source node if certain relations exist
between the new node and the existing graph, other-
wise it will point to the dummy node. An example
with four attention heads and three existing nodes
(excluding the dummy node) is illustrated in Figure
3.

4.6 Iterative Inference
As described above, the concept solver and the re-
lation solver are conceptually two attention mech-
anisms over the sequence and graph respectively,
addressing the concept prediction and relation pre-
diction separately. The key is to pass the decisions
between the solvers so that they can examine each
other’s answer and make harmonious decisions.
Specifically, at each spanning step i, we start the
iterative inference by setting x0 = h0 and solving
f(Gi, x0). After the t-th graph reasoning, we com-
pute the state vector yt, which will be handed over
to the concept solver as g(W, yt), as:

yt = FFN(y)(xt + (W V h1:n)↵t),

where FFN(y) is a feed-forward network and W V

projects text memories into a value space. Simi-
larly, after the t-th sequence reasoning, we update
the state vector from yt to xt+1 as:

xt+1 = FFN(x)(yt +
HX

h=1

(W V

h
s0:n)�

h

t ),

where FFN(x) is a feed-forward network and W V

h

projects graph memories into a value space for each
head h. After N steps of iterative inference, i,e.,

x0 ! f(Gi, x0)! y1 ! g(W, y1)! x1 ! · · ·
! f(Gi, xN�1)! yN ! g(W, yN )! xN ,

we finally employ a deep biaffine classifier (Dozat
and Manning, 2016) for edge label prediction. The

Algorithm 1 AMR Parsing via Graph⌧Sequence
Iterative Inference
Input: the input sentence W = (w1, w2, . . . , wn)
Output: the corresponding AMR graph G

// compute text memories

1: h0, h1, . . . , hn = SequenceEncoder((BOS,
w1, . . . , wn))
// initialize graph

2: G0 = (nodes= {BOG},edges= ;)
// start graph expansions

3: i = 0
4: while True do
5: s0, . . . , si = GraphEncoder(Gi)

// the graph memories can be

computed *incrementally*

6: x0 = h0
// iterative inference

7: for t 1 to N do
8: yt = f(Gi, xt�1) // Seq.!Graph
9: xt = g(W, yt) // Graph!Seq.

10: end for
11: if concept prediction is EOG then
12: break
13: end if
14: update Gi+1 based on Gi, xN and yN
15: i = i+ 1
16: end while
17: return Gi

classifier uses a biaffine function to score each la-
bel, given the final concept representation xN and
the node vector s1:m as input. The resulted concept,
edge, and edge label predictions will added to the
new graph Gi+1 if the concept prediction is not
EOG, a special concept that we add for indicating
termination. Otherwise, the whole parsing process
is terminated and the current graph is returned as
final result. The complete parsing process adopting
the iterative inference is described in Algorithm 1.

5 Training & Prediction

Our model is trained with the standard maximum
likelihood estimate. The optimization objective is
to maximize the sum of the decomposed step-wise
log-likelihood, where each is the sum of concept,
edge, and edge label probabilities. To facilitate
training, we create a reference generation order
of nodes by running a breadth-first-traversal over
target AMR graphs, as it is cognitively appealing
(core-semantic-first principle, Cai and Lam, 2019)
and the effectiveness of pre-order traversal is also

Relation Solver

attention 

xt

Current

Graph 

Concept

Prediction

Relation

Prediction

Relation 
Solver
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Concept Solver

4.4 Concept Solver

At each sequence reasoning step t, the concept
solver receives a state vector yt that carries the
latest graph decision and the input sequence mem-
ories h1, . . . , hn from the sequence encoder, and
aims to locate the proper parts in the input sequence
to abstract and generate a new concept. We em-
ploy the scaled dot-product attention proposed in
Vaswani et al. (2017) to solve this problem. Con-
cretely, we first calculate an attention distribution
over all input tokens:

↵t = softmax(
(WQyt)TWKh1:np

dk
),

where {WQ,WK} 2 Rdk⇥d denote learnable lin-
ear projections that transform the input vectors into
the query and key subspace respectively, and dk
represents the dimensionality of the subspace.

The attention weights ↵t 2 Rn provide a soft
alignment between the new concept and the tokens
in the input sequence. We then compute the proba-
bility distribution of the new concept label through
a hybrid of three channels. First, ↵t is fed through
an MLP and softmax to obtain a probability distri-
bution over a pre-defined vocabulary:

MLP(↵t) = (W V h1:n)↵t + yt (1)

P (vocab) = softmax(W (vocab)MLP(↵t) + b(vocab)),

where W V 2 Rd⇥d denotes the learnable linear
projection that transforms the text memories into
the value subspace, and the value vectors are aver-
aged according to ↵t for concept label prediction.
Second, the attention weights ↵t directly serve as a
copy mechanism (Gu et al., 2016; See et al., 2017),
i,e., the probabilities of copying a token lemma
from the input text as a node label. Third, to ad-
dress the attribute values such as person names or
numerical strings, we also use ↵t for another copy
mechanism that directly copies the original strings
of input tokens. The above three channels are com-
bined via a soft switch to control the production of
the concept label from different sources:

[p0, p1, p2] = softmax(W (switch)MLP(↵t)),

where MLP is the same as in Eq. 1, and p0, p1 and
p2 are the probabilities of three prediction channels
respectively. Hence, the final prediction probability

of a concept c is given by:

P (c) =p0 · P (vocab)(c)

+p1 · (
X

i2L(c)

↵t[i]) + p2 · (
X

i2T (c)

↵t[i]),

where [i] indexes the i-th element and L(c) and
T (c) are index sets of lemmas and tokens respec-
tively that have the surface form as c.

4.5 Relation Solver
At each graph reasoning step t, the relation solver
receives a state vector xt that carries the latest
concept decision and the output graph memories
s0, s1, . . . , sm from the graph encoder, and aims to
point out the nodes in the current graph that have
an immediate relation to the new concept (source
nodes) and generate corresponding edges. Simi-
lar to Cai and Lam (2019); Zhang et al. (2019b),
we factorize the task as two stages: First, a rela-
tion identification module points to some preceding
nodes as source nodes; Then, the relation classifica-
tion module predicts the relation type between the
new concept and predicted source nodes. We leave
the latter to be determined after iterative inference.

AMR is a rooted, directed, and acyclic graph.
The reason for AMR being a graph instead of a tree
is that it allows reentrancies where a concept partic-
ipates in multiple semantic relations with different
semantic roles. Following Cai and Lam (2019),
we use multi-head attention for a more compact
parsing procedure where multiple source nodes are
simultaneously determined.5 Formally, our relation
identification module employs H different atten-
tion heads, for each head h, we calculate an atten-
tion distribution over all existing node (including
the dummy node s0):

�h

t = softmax(
(WQ

h
xt)TWK

h
s0:mp

dk
).

Then, we take the maximum over different heads
as the final edge probabilities:

�t[i] =
H

max
h=1

�h

t [i].

Therefore, different heads may points to different
nodes at the same time. Intuitively, each head rep-
resents a distinct relation detector for a particular

5This is different to Zhang et al. (2019b) where an AMR
graph is converted into a tree by duplicating nodes that have
reentrant relations.

Copy mechanisms
0: generate from the concept vocabulary
1: copy the lemma
2: copy the token string
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Experiment Setup
• AMR2.0 (LDC2017T10)


• The latest AMR sembank


• ~37K, ~1K, and ~1K sentences in the training, development, 
and testing sets respectively


• AMR1.0 (LDC2014T12)


• Same dev and test with AMR2.0, ~10K training sentences


• good testbed to evaluate our model’s sensitivity for data size 
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Evaluation Metrics 

• Smatch (Cai and Knight, 2013) : seeks the maximum 
overlap after transforming graph into relation triples. 


• Fine-grained metrics (Damonte et al, 2017) for 
individual sub-tasks.

• NER, SRL, reentrancies, …
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Ablation 
(settings)

• Graph Re-categorization


• BERT
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Graph Re-categorization

• Non-trivial. It requires exhaustive screening and expert-
level manual efforts.


• The precise set of re-categorization rules differs among 
different models.

temporal-quantity

ARG3-of

rate-entity-91 year

unit

1

quant

rate-entity-3 (annual-01)

recategorize
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BERT
of generating word-level embeddings from BERT.

victim could help himselfThe

Wordpiece Tokenizer

The vict ##im could help him ##self

BERT

Average
Pooling

Average
Pooling

BERT Embeddings

.

.

Figure 4: Word-level embeddings from BERT.

Encoder The encoder is a multi-layer bidirec-
tional RNN (Schuster and Paliwal, 1997):

hl
i = [
�!
f l(hl�1

i ,hl
i�1);

 �
f l(hl�1

i ,hl
i+1)],

where
�!
f l and

 �
f l are two LSTM cells (Hochre-

iter and Schmidhuber, 1997); hl
i is the l-th layer

encoder hidden state at the time step i; h0
i is the

encoder embedding layer output for word wi.
Decoder Embedding Layer Similar to the en-
coder embedding layer, this layer outputs vector
representations for AMR nodes. The difference
is that each vector is the concatenation of embed-
dings of GloVe, POS tags and indices, and feature
vectors from CharCNN.

POS tags of nodes are inferred at runtime: if a
node is a copy from the input sentence, the POS
tag of the corresponding word is used; if a node
is a copy from the preceding nodes, the POS tag
of its antecedent is used; if a node is a new node
emitted from the vocabulary, an UNK tag is used.

We do not include BERT embeddings in this
layer because AMR nodes, especially their order,
are significantly different from natural language
text (on which BERT was pre-trained). We tried
to use “fixed” BERT in this layer, which did not
lead to improvement.2

Decoder At each step t, the decoder (an l-layer
unidirectional LSTM) receives hidden state sl�1

t

from the last layer and hidden state slt�1 from the
previous time step, and generates hidden state slt:

slt = f l(sl�1
t , slt�1),

where s0t is the concatenation (i.e., the input-

feeding approach, Luong et al., 2015) of two vec-
tors: the decoder embedding layer output for the

2 Limited by the GPU memory, we do not fine-tune BERT
on this task and leave it for future work.

previous node ut�1 (while training, ut�1 is the
previous node of the reference node list; at test
time it is the previous node emitted by the de-
coder), and the attentional vector est�1 from the
previous step (explained later in this section). sl0
is the concatenation of last encoder hidden states

from
�!
f l and

 �
f l respectively.

Source attention distribution at
src is calculated

by additive attention (Bahdanau et al., 2014):

etsrc = v>
srctanh(Wsrch

l
1:n +Usrcs

l
t + bsrc),

at
src = softmax(etsrc),

and it is then used to produce a weighted sum of
encoder hidden states, i.e., the context vector ct.

Attentional vector est combines both source and
target side information, and it is calculated by an
MLP (shown in Figure 3):

est = tanh(Wc[ct; s
l
t] + bc)

The attentional vector est has 3 usages:
(1) it is fed through a linear layer and softmax to
produce the vocabulary distribution:

Pvocab = softmax(Wvocabest + bvocab)

(2) it is used to calculate the target attention dis-

tribution at
tgt:

ettgt = v>
tgttanh(Wtgtes1:t�1 +Utgtest + btgt),

at
tgt = softmax(ettgt),

(3) it is used to calculate source-side copy prob-
ability psrc, target-side copy probability ptgt, and
generation probability pgen via a switch layer:

[psrc, ptgt, pgen] = softmax(Wswitchest + bswitch)

Note that psrc + ptgt + pgen = 1. They act as a
soft switch to choose between copying an exist-
ing node from the preceding nodes by sampling
from the target attention distribution at

tgt, or emit-

ting a new node in two ways: (1) generating a new
node from the fixed vocabulary by sampling from
Pvocab, or (2) copying a word (as a new node) from
the input sentence by sampling from the source at-
tention distribution at

src.
The final probability distribution P (node)(ut) for

node ut is defined as follows. If ut is a copy of
existing nodes, then:

P (node)(ut) = ptgt

t�1X

i:ui=ut

at
tgt[i],

* left figure is from (Zhang et al., 2019a)

Sequence 
Encoder Parsing
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Settings
Model G. R. BERT SMATCH

fine-grained evaluation
Unlabeled No WSD Concept SRL Reent. Neg. NER Wiki

van Noord and Bos (2017) × × 71.0 74 72 82 66 52 62 79 65
Groschwitz et al. (2018) X × 71.0 74 72 84 64 49 57 78 71

Lyu and Titov (2018) X × 74.4 77.1 75.5 85.9 69.8 52.3 58.4 86.0 75.7
Cai and Lam (2019) × × 73.2 77.0 74.2 84.4 66.7 55.3 62.9 82.0 73.2

Lindemann et al. (2019) X X 75.3 - - - - - - - -
Naseem et al. (2019) X X 75.5 80 76 86 72 56 67 83 80
Zhang et al. (2019a) X × 74.6 - - - - - - - -
Zhang et al. (2019a) X X 76.3 79.0 76.8 84.8 69.7 60.0 75.2 77.9 85.8
Zhang et al. (2019b) X X 77.0 80 78 86 71 61 77 79 86

Ours

× × 74.5 77.8 75.1 85.9 68.5 57.7 65.0 82.9 81.1
X × 77.3 80.1 77.9 86.4 69.4 58.5 75.6 78.4 86.1
× X 78.7 81.5 79.2 88.1 74.5 63.8 66.1 87.1 81.3
X X 80.2 82.8 80.8 88.1 74.2 64.6 78.9 81.1 86.3

Table 1: SMATCH scores (%) (left) and fine-grained evaluations (%) (right) on the test set of AMR 2.0. G. R./BERT
indicates whether or not the results use Graph Re-categorization/BERT respectively.

Model G. R. BERT SMATCH

Flanigan et al. (2016) × × 66.0
Pust et al. (2015) × × 67.1

Wang and Xue (2017) X × 68.1
Guo and Lu (2018) X × 68.3
Zhang et al. (2019a) X X 70.2
Zhang et al. (2019b) X X 71.3

Ours

× × 68.8
X × 71.2
× X 74.0
X X 75.4

Table 2: SMATCH scores on the test set of AMR 1.0.

most models trained on AMR 2.0. The even more
substantial performance gain on the smaller dataset
suggests that our method is both effective and data-
efficient. Besides, again, our model without BERT
already surpasses previous state-of-the-art results
using BERT. For ablated models, it can be observed
that our models yield the best results in all settings
if there are any competitors, indicating BERT and
graph re-categorization are not the exclusive key
for our superior performance.

Fine-grained Results In order to investigate
how our parser performs on individual sub-tasks,
we also use the fine-grained evaluation tool (Da-
monte et al., 2017) and compare to systems which
reported these scores.8 As shown in the right block
of Table 1, our best model obtains the highest
scores on almost all sub-tasks. The improvements
in all sub-tasks are consistent and uniform (around
2%⇠3%) compared to the previous state-of-the-art
performance (Zhang et al., 2019b), partly confirm-
ing that our model boosts performance via consol-
idated and harmonious decisions rather than fix-

8We only list the results on AMR 2.0 since there are few
results on AMR 1.0 to compare.
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Figure 4: SMATCH scores with different numbers of
inference steps. Sentences are grouped by length.

ing particular phenomena. By our ablation study,
it is worth noting that the NER scores are much
lower when using graph re-categorization. This is
because the rule-based system for NER in graph re-
categorization does not generalize well to unseen
entities, which suggest a potential improvement by
adapting better NER taggers.

6.3 More Analysis
Effect of Iterative Inference We then turn to
study the effect of our key idea, namely, the it-
erative inference design. To this end, we run a set
of experiments with different values of the num-
ber of the inference steps N . The results on AMR
2.0 are shown in Figure 4 (solid line). As seen,
the performance generally goes up when the num-
ber of inference steps increases. The difference
is most noticeable between 1 (no iterative reason-
ing is performed) and 2, while later improvements
gradually diminish. One important point here is
that the model size in terms of the number of pa-
rameters is constant regardless of the number of
inference steps, making it different from general
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most models trained on AMR 2.0. The even more
substantial performance gain on the smaller dataset
suggests that our method is both effective and data-
efficient. Besides, again, our model without BERT
already surpasses previous state-of-the-art results
using BERT. For ablated models, it can be observed
that our models yield the best results in all settings
if there are any competitors, indicating BERT and
graph re-categorization are not the exclusive key
for our superior performance.

Fine-grained Results In order to investigate
how our parser performs on individual sub-tasks,
we also use the fine-grained evaluation tool (Da-
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reported these scores.8 As shown in the right block
of Table 1, our best model obtains the highest
scores on almost all sub-tasks. The improvements
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ing that our model boosts performance via consol-
idated and harmonious decisions rather than fix-
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entities, which suggest a potential improvement by
adapting better NER taggers.
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2.0 are shown in Figure 4 (solid line). As seen,
the performance generally goes up when the num-
ber of inference steps increases. The difference
is most noticeable between 1 (no iterative reason-
ing is performed) and 2, while later improvements
gradually diminish. One important point here is
that the model size in terms of the number of pa-
rameters is constant regardless of the number of
inference steps, making it different from general

Model G. R. BERT SMATCH
fine-grained evaluation

Unlabeled No WSD Concept SRL Reent. Neg. NER Wiki
van Noord and Bos (2017) × × 71.0 74 72 82 66 52 62 79 65
Groschwitz et al. (2018) X × 71.0 74 72 84 64 49 57 78 71

Lyu and Titov (2018) X × 74.4 77.1 75.5 85.9 69.8 52.3 58.4 86.0 75.7
Cai and Lam (2019) × × 73.2 77.0 74.2 84.4 66.7 55.3 62.9 82.0 73.2

Lindemann et al. (2019) X X 75.3 - - - - - - - -
Naseem et al. (2019) X X 75.5 80 76 86 72 56 67 83 80
Zhang et al. (2019a) X × 74.6 - - - - - - - -
Zhang et al. (2019a) X X 76.3 79.0 76.8 84.8 69.7 60.0 75.2 77.9 85.8
Zhang et al. (2019b) X X 77.0 80 78 86 71 61 77 79 86

Ours

× × 74.5 77.8 75.1 85.9 68.5 57.7 65.0 82.9 81.1
X × 77.3 80.1 77.9 86.4 69.4 58.5 75.6 78.4 86.1
× X 78.7 81.5 79.2 88.1 74.5 63.8 66.1 87.1 81.3
X X 80.2 82.8 80.8 88.1 74.2 64.6 78.9 81.1 86.3

Table 1: SMATCH scores (%) (left) and fine-grained evaluations (%) (right) on the test set of AMR 2.0. G. R./BERT
indicates whether or not the results use Graph Re-categorization/BERT respectively.

Model G. R. BERT SMATCH

Flanigan et al. (2016) × × 66.0
Pust et al. (2015) × × 67.1

Wang and Xue (2017) X × 68.1
Guo and Lu (2018) X × 68.3
Zhang et al. (2019a) X X 70.2
Zhang et al. (2019b) X X 71.3

Ours

× × 68.8
X × 71.2
× X 74.0
X X 75.4

Table 2: SMATCH scores on the test set of AMR 1.0.

most models trained on AMR 2.0. The even more
substantial performance gain on the smaller dataset
suggests that our method is both effective and data-
efficient. Besides, again, our model without BERT
already surpasses previous state-of-the-art results
using BERT. For ablated models, it can be observed
that our models yield the best results in all settings
if there are any competitors, indicating BERT and
graph re-categorization are not the exclusive key
for our superior performance.

Fine-grained Results In order to investigate
how our parser performs on individual sub-tasks,
we also use the fine-grained evaluation tool (Da-
monte et al., 2017) and compare to systems which
reported these scores.8 As shown in the right block
of Table 1, our best model obtains the highest
scores on almost all sub-tasks. The improvements
in all sub-tasks are consistent and uniform (around
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ing particular phenomena. By our ablation study,
it is worth noting that the NER scores are much
lower when using graph re-categorization. This is
because the rule-based system for NER in graph re-
categorization does not generalize well to unseen
entities, which suggest a potential improvement by
adapting better NER taggers.

6.3 More Analysis
Effect of Iterative Inference We then turn to
study the effect of our key idea, namely, the it-
erative inference design. To this end, we run a set
of experiments with different values of the num-
ber of the inference steps N . The results on AMR
2.0 are shown in Figure 4 (solid line). As seen,
the performance generally goes up when the num-
ber of inference steps increases. The difference
is most noticeable between 1 (no iterative reason-
ing is performed) and 2, while later improvements
gradually diminish. One important point here is
that the model size in terms of the number of pa-
rameters is constant regardless of the number of
inference steps, making it different from general
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most models trained on AMR 2.0. The even more
substantial performance gain on the smaller dataset
suggests that our method is both effective and data-
efficient. Besides, again, our model without BERT
already surpasses previous state-of-the-art results
using BERT. For ablated models, it can be observed
that our models yield the best results in all settings
if there are any competitors, indicating BERT and
graph re-categorization are not the exclusive key
for our superior performance.

Fine-grained Results In order to investigate
how our parser performs on individual sub-tasks,
we also use the fine-grained evaluation tool (Da-
monte et al., 2017) and compare to systems which
reported these scores.8 As shown in the right block
of Table 1, our best model obtains the highest
scores on almost all sub-tasks. The improvements
in all sub-tasks are consistent and uniform (around
2%⇠3%) compared to the previous state-of-the-art
performance (Zhang et al., 2019b), partly confirm-
ing that our model boosts performance via consol-
idated and harmonious decisions rather than fix-

8We only list the results on AMR 2.0 since there are few
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ing particular phenomena. By our ablation study,
it is worth noting that the NER scores are much
lower when using graph re-categorization. This is
because the rule-based system for NER in graph re-
categorization does not generalize well to unseen
entities, which suggest a potential improvement by
adapting better NER taggers.

6.3 More Analysis
Effect of Iterative Inference We then turn to
study the effect of our key idea, namely, the it-
erative inference design. To this end, we run a set
of experiments with different values of the num-
ber of the inference steps N . The results on AMR
2.0 are shown in Figure 4 (solid line). As seen,
the performance generally goes up when the num-
ber of inference steps increases. The difference
is most noticeable between 1 (no iterative reason-
ing is performed) and 2, while later improvements
gradually diminish. One important point here is
that the model size in terms of the number of pa-
rameters is constant regardless of the number of
inference steps, making it different from general
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for our superior performance.
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of Table 1, our best model obtains the highest
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performance (Zhang et al., 2019b), partly confirm-
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using BERT. For ablated models, it can be observed
that our models yield the best results in all settings
if there are any competitors, indicating BERT and
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adapting better NER taggers.

6.3 More Analysis
Effect of Iterative Inference We then turn to
study the effect of our key idea, namely, the it-
erative inference design. To this end, we run a set
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using BERT. For ablated models, it can be observed
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of Table 1, our best model obtains the highest
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Pust et al. (2015) × × 67.1

Wang and Xue (2017) X × 68.1
Guo and Lu (2018) X × 68.3
Zhang et al. (2019a) X X 70.2
Zhang et al. (2019b) X X 71.3

Ours

× × 68.8
X × 71.2
× X 74.0
X X 75.4

Table 2: SMATCH scores on the test set of AMR 1.0.

most models trained on AMR 2.0. The even more
substantial performance gain on the smaller dataset
suggests that our method is both effective and data-
efficient. Besides, again, our model without BERT
already surpasses previous state-of-the-art results
using BERT. For ablated models, it can be observed
that our models yield the best results in all settings
if there are any competitors, indicating BERT and
graph re-categorization are not the exclusive key
for our superior performance.

Fine-grained Results In order to investigate
how our parser performs on individual sub-tasks,
we also use the fine-grained evaluation tool (Da-
monte et al., 2017) and compare to systems which
reported these scores.8 As shown in the right block
of Table 1, our best model obtains the highest
scores on almost all sub-tasks. The improvements
in all sub-tasks are consistent and uniform (around
2%⇠3%) compared to the previous state-of-the-art
performance (Zhang et al., 2019b), partly confirm-
ing that our model boosts performance via consol-
idated and harmonious decisions rather than fix-

8We only list the results on AMR 2.0 since there are few
results on AMR 1.0 to compare.
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Figure 4: SMATCH scores with different numbers of
inference steps. Sentences are grouped by length.

ing particular phenomena. By our ablation study,
it is worth noting that the NER scores are much
lower when using graph re-categorization. This is
because the rule-based system for NER in graph re-
categorization does not generalize well to unseen
entities, which suggest a potential improvement by
adapting better NER taggers.

6.3 More Analysis
Effect of Iterative Inference We then turn to
study the effect of our key idea, namely, the it-
erative inference design. To this end, we run a set
of experiments with different values of the num-
ber of the inference steps N . The results on AMR
2.0 are shown in Figure 4 (solid line). As seen,
the performance generally goes up when the num-
ber of inference steps increases. The difference
is most noticeable between 1 (no iterative reason-
ing is performed) and 2, while later improvements
gradually diminish. One important point here is
that the model size in terms of the number of pa-
rameters is constant regardless of the number of
inference steps, making it different from general
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Main Results
Model G. R. BERT SMATCH

fine-grained evaluation
Unlabeled No WSD Concept SRL Reent. Neg. NER Wiki

van Noord and Bos (2017) × × 71.0 74 72 82 66 52 62 79 65
Groschwitz et al. (2018) X × 71.0 74 72 84 64 49 57 78 71

Lyu and Titov (2018) X × 74.4 77.1 75.5 85.9 69.8 52.3 58.4 86.0 75.7
Cai and Lam (2019) × × 73.2 77.0 74.2 84.4 66.7 55.3 62.9 82.0 73.2

Lindemann et al. (2019) X X 75.3 - - - - - - - -
Naseem et al. (2019) X X 75.5 80 76 86 72 56 67 83 80
Zhang et al. (2019a) X × 74.6 - - - - - - - -
Zhang et al. (2019a) X X 76.3 79.0 76.8 84.8 69.7 60.0 75.2 77.9 85.8
Zhang et al. (2019b) X X 77.0 80 78 86 71 61 77 79 86

Ours

× × 74.5 77.8 75.1 85.9 68.5 57.7 65.0 82.9 81.1
X × 77.3 80.1 77.9 86.4 69.4 58.5 75.6 78.4 86.1
× X 78.7 81.5 79.2 88.1 74.5 63.8 66.1 87.1 81.3
X X 80.2 82.8 80.8 88.1 74.2 64.6 78.9 81.1 86.3

Table 1: SMATCH scores (%) (left) and fine-grained evaluations (%) (right) on the test set of AMR 2.0. G. R./BERT
indicates whether or not the results use Graph Re-categorization/BERT respectively.

Model G. R. BERT SMATCH

Flanigan et al. (2016) × × 66.0
Pust et al. (2015) × × 67.1

Wang and Xue (2017) X × 68.1
Guo and Lu (2018) X × 68.3
Zhang et al. (2019a) X X 70.2
Zhang et al. (2019b) X X 71.3

Ours

× × 68.8
X × 71.2
× X 74.0
X X 75.4

Table 2: SMATCH scores on the test set of AMR 1.0.

most models trained on AMR 2.0. The even more
substantial performance gain on the smaller dataset
suggests that our method is both effective and data-
efficient. Besides, again, our model without BERT
already surpasses previous state-of-the-art results
using BERT. For ablated models, it can be observed
that our models yield the best results in all settings
if there are any competitors, indicating BERT and
graph re-categorization are not the exclusive key
for our superior performance.

Fine-grained Results In order to investigate
how our parser performs on individual sub-tasks,
we also use the fine-grained evaluation tool (Da-
monte et al., 2017) and compare to systems which
reported these scores.8 As shown in the right block
of Table 1, our best model obtains the highest
scores on almost all sub-tasks. The improvements
in all sub-tasks are consistent and uniform (around
2%⇠3%) compared to the previous state-of-the-art
performance (Zhang et al., 2019b), partly confirm-
ing that our model boosts performance via consol-
idated and harmonious decisions rather than fix-

8We only list the results on AMR 2.0 since there are few
results on AMR 1.0 to compare.
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inference steps. Sentences are grouped by length.

ing particular phenomena. By our ablation study,
it is worth noting that the NER scores are much
lower when using graph re-categorization. This is
because the rule-based system for NER in graph re-
categorization does not generalize well to unseen
entities, which suggest a potential improvement by
adapting better NER taggers.

6.3 More Analysis
Effect of Iterative Inference We then turn to
study the effect of our key idea, namely, the it-
erative inference design. To this end, we run a set
of experiments with different values of the num-
ber of the inference steps N . The results on AMR
2.0 are shown in Figure 4 (solid line). As seen,
the performance generally goes up when the num-
ber of inference steps increases. The difference
is most noticeable between 1 (no iterative reason-
ing is performed) and 2, while later improvements
gradually diminish. One important point here is
that the model size in terms of the number of pa-
rameters is constant regardless of the number of
inference steps, making it different from general

Model G. R. BERT SMATCH
fine-grained evaluation

Unlabeled No WSD Concept SRL Reent. Neg. NER Wiki
van Noord and Bos (2017) × × 71.0 74 72 82 66 52 62 79 65
Groschwitz et al. (2018) X × 71.0 74 72 84 64 49 57 78 71

Lyu and Titov (2018) X × 74.4 77.1 75.5 85.9 69.8 52.3 58.4 86.0 75.7
Cai and Lam (2019) × × 73.2 77.0 74.2 84.4 66.7 55.3 62.9 82.0 73.2

Lindemann et al. (2019) X X 75.3 - - - - - - - -
Naseem et al. (2019) X X 75.5 80 76 86 72 56 67 83 80
Zhang et al. (2019a) X × 74.6 - - - - - - - -
Zhang et al. (2019a) X X 76.3 79.0 76.8 84.8 69.7 60.0 75.2 77.9 85.8
Zhang et al. (2019b) X X 77.0 80 78 86 71 61 77 79 86

Ours

× × 74.5 77.8 75.1 85.9 68.5 57.7 65.0 82.9 81.1
X × 77.3 80.1 77.9 86.4 69.4 58.5 75.6 78.4 86.1
× X 78.7 81.5 79.2 88.1 74.5 63.8 66.1 87.1 81.3
X X 80.2 82.8 80.8 88.1 74.2 64.6 78.9 81.1 86.3

Table 1: SMATCH scores (%) (left) and fine-grained evaluations (%) (right) on the test set of AMR 2.0. G. R./BERT
indicates whether or not the results use Graph Re-categorization/BERT respectively.

Model G. R. BERT SMATCH

Flanigan et al. (2016) × × 66.0
Pust et al. (2015) × × 67.1

Wang and Xue (2017) X × 68.1
Guo and Lu (2018) X × 68.3
Zhang et al. (2019a) X X 70.2
Zhang et al. (2019b) X X 71.3

Ours

× × 68.8
X × 71.2
× X 74.0
X X 75.4

Table 2: SMATCH scores on the test set of AMR 1.0.

most models trained on AMR 2.0. The even more
substantial performance gain on the smaller dataset
suggests that our method is both effective and data-
efficient. Besides, again, our model without BERT
already surpasses previous state-of-the-art results
using BERT. For ablated models, it can be observed
that our models yield the best results in all settings
if there are any competitors, indicating BERT and
graph re-categorization are not the exclusive key
for our superior performance.

Fine-grained Results In order to investigate
how our parser performs on individual sub-tasks,
we also use the fine-grained evaluation tool (Da-
monte et al., 2017) and compare to systems which
reported these scores.8 As shown in the right block
of Table 1, our best model obtains the highest
scores on almost all sub-tasks. The improvements
in all sub-tasks are consistent and uniform (around
2%⇠3%) compared to the previous state-of-the-art
performance (Zhang et al., 2019b), partly confirm-
ing that our model boosts performance via consol-
idated and harmonious decisions rather than fix-

8We only list the results on AMR 2.0 since there are few
results on AMR 1.0 to compare.
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inference steps. Sentences are grouped by length.

ing particular phenomena. By our ablation study,
it is worth noting that the NER scores are much
lower when using graph re-categorization. This is
because the rule-based system for NER in graph re-
categorization does not generalize well to unseen
entities, which suggest a potential improvement by
adapting better NER taggers.

6.3 More Analysis
Effect of Iterative Inference We then turn to
study the effect of our key idea, namely, the it-
erative inference design. To this end, we run a set
of experiments with different values of the num-
ber of the inference steps N . The results on AMR
2.0 are shown in Figure 4 (solid line). As seen,
the performance generally goes up when the num-
ber of inference steps increases. The difference
is most noticeable between 1 (no iterative reason-
ing is performed) and 2, while later improvements
gradually diminish. One important point here is
that the model size in terms of the number of pa-
rameters is constant regardless of the number of
inference steps, making it different from general

Model G. R. BERT SMATCH
fine-grained evaluation

Unlabeled No WSD Concept SRL Reent. Neg. NER Wiki
van Noord and Bos (2017) × × 71.0 74 72 82 66 52 62 79 65
Groschwitz et al. (2018) X × 71.0 74 72 84 64 49 57 78 71

Lyu and Titov (2018) X × 74.4 77.1 75.5 85.9 69.8 52.3 58.4 86.0 75.7
Cai and Lam (2019) × × 73.2 77.0 74.2 84.4 66.7 55.3 62.9 82.0 73.2

Lindemann et al. (2019) X X 75.3 - - - - - - - -
Naseem et al. (2019) X X 75.5 80 76 86 72 56 67 83 80
Zhang et al. (2019a) X × 74.6 - - - - - - - -
Zhang et al. (2019a) X X 76.3 79.0 76.8 84.8 69.7 60.0 75.2 77.9 85.8
Zhang et al. (2019b) X X 77.0 80 78 86 71 61 77 79 86

Ours

× × 74.5 77.8 75.1 85.9 68.5 57.7 65.0 82.9 81.1
X × 77.3 80.1 77.9 86.4 69.4 58.5 75.6 78.4 86.1
× X 78.7 81.5 79.2 88.1 74.5 63.8 66.1 87.1 81.3
X X 80.2 82.8 80.8 88.1 74.2 64.6 78.9 81.1 86.3

Table 1: SMATCH scores (%) (left) and fine-grained evaluations (%) (right) on the test set of AMR 2.0. G. R./BERT
indicates whether or not the results use Graph Re-categorization/BERT respectively.

Model G. R. BERT SMATCH

Flanigan et al. (2016) × × 66.0
Pust et al. (2015) × × 67.1

Wang and Xue (2017) X × 68.1
Guo and Lu (2018) X × 68.3
Zhang et al. (2019a) X X 70.2
Zhang et al. (2019b) X X 71.3

Ours

× × 68.8
X × 71.2
× X 74.0
X X 75.4

Table 2: SMATCH scores on the test set of AMR 1.0.

most models trained on AMR 2.0. The even more
substantial performance gain on the smaller dataset
suggests that our method is both effective and data-
efficient. Besides, again, our model without BERT
already surpasses previous state-of-the-art results
using BERT. For ablated models, it can be observed
that our models yield the best results in all settings
if there are any competitors, indicating BERT and
graph re-categorization are not the exclusive key
for our superior performance.

Fine-grained Results In order to investigate
how our parser performs on individual sub-tasks,
we also use the fine-grained evaluation tool (Da-
monte et al., 2017) and compare to systems which
reported these scores.8 As shown in the right block
of Table 1, our best model obtains the highest
scores on almost all sub-tasks. The improvements
in all sub-tasks are consistent and uniform (around
2%⇠3%) compared to the previous state-of-the-art
performance (Zhang et al., 2019b), partly confirm-
ing that our model boosts performance via consol-
idated and harmonious decisions rather than fix-

8We only list the results on AMR 2.0 since there are few
results on AMR 1.0 to compare.
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Figure 4: SMATCH scores with different numbers of
inference steps. Sentences are grouped by length.

ing particular phenomena. By our ablation study,
it is worth noting that the NER scores are much
lower when using graph re-categorization. This is
because the rule-based system for NER in graph re-
categorization does not generalize well to unseen
entities, which suggest a potential improvement by
adapting better NER taggers.

6.3 More Analysis
Effect of Iterative Inference We then turn to
study the effect of our key idea, namely, the it-
erative inference design. To this end, we run a set
of experiments with different values of the num-
ber of the inference steps N . The results on AMR
2.0 are shown in Figure 4 (solid line). As seen,
the performance generally goes up when the num-
ber of inference steps increases. The difference
is most noticeable between 1 (no iterative reason-
ing is performed) and 2, while later improvements
gradually diminish. One important point here is
that the model size in terms of the number of pa-
rameters is constant regardless of the number of
inference steps, making it different from general

Model G. R. BERT SMATCH
fine-grained evaluation

Unlabeled No WSD Concept SRL Reent. Neg. NER Wiki
van Noord and Bos (2017) × × 71.0 74 72 82 66 52 62 79 65
Groschwitz et al. (2018) X × 71.0 74 72 84 64 49 57 78 71

Lyu and Titov (2018) X × 74.4 77.1 75.5 85.9 69.8 52.3 58.4 86.0 75.7
Cai and Lam (2019) × × 73.2 77.0 74.2 84.4 66.7 55.3 62.9 82.0 73.2

Lindemann et al. (2019) X X 75.3 - - - - - - - -
Naseem et al. (2019) X X 75.5 80 76 86 72 56 67 83 80
Zhang et al. (2019a) X × 74.6 - - - - - - - -
Zhang et al. (2019a) X X 76.3 79.0 76.8 84.8 69.7 60.0 75.2 77.9 85.8
Zhang et al. (2019b) X X 77.0 80 78 86 71 61 77 79 86

Ours

× × 74.5 77.8 75.1 85.9 68.5 57.7 65.0 82.9 81.1
X × 77.3 80.1 77.9 86.4 69.4 58.5 75.6 78.4 86.1
× X 78.7 81.5 79.2 88.1 74.5 63.8 66.1 87.1 81.3
X X 80.2 82.8 80.8 88.1 74.2 64.6 78.9 81.1 86.3

Table 1: SMATCH scores (%) (left) and fine-grained evaluations (%) (right) on the test set of AMR 2.0. G. R./BERT
indicates whether or not the results use Graph Re-categorization/BERT respectively.

Model G. R. BERT SMATCH

Flanigan et al. (2016) × × 66.0
Pust et al. (2015) × × 67.1

Wang and Xue (2017) X × 68.1
Guo and Lu (2018) X × 68.3
Zhang et al. (2019a) X X 70.2
Zhang et al. (2019b) X X 71.3

Ours

× × 68.8
X × 71.2
× X 74.0
X X 75.4

Table 2: SMATCH scores on the test set of AMR 1.0.

most models trained on AMR 2.0. The even more
substantial performance gain on the smaller dataset
suggests that our method is both effective and data-
efficient. Besides, again, our model without BERT
already surpasses previous state-of-the-art results
using BERT. For ablated models, it can be observed
that our models yield the best results in all settings
if there are any competitors, indicating BERT and
graph re-categorization are not the exclusive key
for our superior performance.

Fine-grained Results In order to investigate
how our parser performs on individual sub-tasks,
we also use the fine-grained evaluation tool (Da-
monte et al., 2017) and compare to systems which
reported these scores.8 As shown in the right block
of Table 1, our best model obtains the highest
scores on almost all sub-tasks. The improvements
in all sub-tasks are consistent and uniform (around
2%⇠3%) compared to the previous state-of-the-art
performance (Zhang et al., 2019b), partly confirm-
ing that our model boosts performance via consol-
idated and harmonious decisions rather than fix-

8We only list the results on AMR 2.0 since there are few
results on AMR 1.0 to compare.
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Figure 4: SMATCH scores with different numbers of
inference steps. Sentences are grouped by length.

ing particular phenomena. By our ablation study,
it is worth noting that the NER scores are much
lower when using graph re-categorization. This is
because the rule-based system for NER in graph re-
categorization does not generalize well to unseen
entities, which suggest a potential improvement by
adapting better NER taggers.

6.3 More Analysis
Effect of Iterative Inference We then turn to
study the effect of our key idea, namely, the it-
erative inference design. To this end, we run a set
of experiments with different values of the num-
ber of the inference steps N . The results on AMR
2.0 are shown in Figure 4 (solid line). As seen,
the performance generally goes up when the num-
ber of inference steps increases. The difference
is most noticeable between 1 (no iterative reason-
ing is performed) and 2, while later improvements
gradually diminish. One important point here is
that the model size in terms of the number of pa-
rameters is constant regardless of the number of
inference steps, making it different from general

2.0.
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Main Results
Model G. R. BERT SMATCH

fine-grained evaluation
Unlabeled No WSD Concept SRL Reent. Neg. NER Wiki

van Noord and Bos (2017) × × 71.0 74 72 82 66 52 62 79 65
Groschwitz et al. (2018) X × 71.0 74 72 84 64 49 57 78 71

Lyu and Titov (2018) X × 74.4 77.1 75.5 85.9 69.8 52.3 58.4 86.0 75.7
Cai and Lam (2019) × × 73.2 77.0 74.2 84.4 66.7 55.3 62.9 82.0 73.2

Lindemann et al. (2019) X X 75.3 - - - - - - - -
Naseem et al. (2019) X X 75.5 80 76 86 72 56 67 83 80
Zhang et al. (2019a) X × 74.6 - - - - - - - -
Zhang et al. (2019a) X X 76.3 79.0 76.8 84.8 69.7 60.0 75.2 77.9 85.8
Zhang et al. (2019b) X X 77.0 80 78 86 71 61 77 79 86

Ours

× × 74.5 77.8 75.1 85.9 68.5 57.7 65.0 82.9 81.1
X × 77.3 80.1 77.9 86.4 69.4 58.5 75.6 78.4 86.1
× X 78.7 81.5 79.2 88.1 74.5 63.8 66.1 87.1 81.3
X X 80.2 82.8 80.8 88.1 74.2 64.6 78.9 81.1 86.3

Table 1: SMATCH scores (%) (left) and fine-grained evaluations (%) (right) on the test set of AMR 2.0. G. R./BERT
indicates whether or not the results use Graph Re-categorization/BERT respectively.

Model G. R. BERT SMATCH

Flanigan et al. (2016) × × 66.0
Pust et al. (2015) × × 67.1

Wang and Xue (2017) X × 68.1
Guo and Lu (2018) X × 68.3
Zhang et al. (2019a) X X 70.2
Zhang et al. (2019b) X X 71.3

Ours

× × 68.8
X × 71.2
× X 74.0
X X 75.4

Table 2: SMATCH scores on the test set of AMR 1.0.

most models trained on AMR 2.0. The even more
substantial performance gain on the smaller dataset
suggests that our method is both effective and data-
efficient. Besides, again, our model without BERT
already surpasses previous state-of-the-art results
using BERT. For ablated models, it can be observed
that our models yield the best results in all settings
if there are any competitors, indicating BERT and
graph re-categorization are not the exclusive key
for our superior performance.

Fine-grained Results In order to investigate
how our parser performs on individual sub-tasks,
we also use the fine-grained evaluation tool (Da-
monte et al., 2017) and compare to systems which
reported these scores.8 As shown in the right block
of Table 1, our best model obtains the highest
scores on almost all sub-tasks. The improvements
in all sub-tasks are consistent and uniform (around
2%⇠3%) compared to the previous state-of-the-art
performance (Zhang et al., 2019b), partly confirm-
ing that our model boosts performance via consol-
idated and harmonious decisions rather than fix-

8We only list the results on AMR 2.0 since there are few
results on AMR 1.0 to compare.
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Figure 4: SMATCH scores with different numbers of
inference steps. Sentences are grouped by length.

ing particular phenomena. By our ablation study,
it is worth noting that the NER scores are much
lower when using graph re-categorization. This is
because the rule-based system for NER in graph re-
categorization does not generalize well to unseen
entities, which suggest a potential improvement by
adapting better NER taggers.

6.3 More Analysis
Effect of Iterative Inference We then turn to
study the effect of our key idea, namely, the it-
erative inference design. To this end, we run a set
of experiments with different values of the num-
ber of the inference steps N . The results on AMR
2.0 are shown in Figure 4 (solid line). As seen,
the performance generally goes up when the num-
ber of inference steps increases. The difference
is most noticeable between 1 (no iterative reason-
ing is performed) and 2, while later improvements
gradually diminish. One important point here is
that the model size in terms of the number of pa-
rameters is constant regardless of the number of
inference steps, making it different from general

Model G. R. BERT SMATCH
fine-grained evaluation

Unlabeled No WSD Concept SRL Reent. Neg. NER Wiki
van Noord and Bos (2017) × × 71.0 74 72 82 66 52 62 79 65
Groschwitz et al. (2018) X × 71.0 74 72 84 64 49 57 78 71

Lyu and Titov (2018) X × 74.4 77.1 75.5 85.9 69.8 52.3 58.4 86.0 75.7
Cai and Lam (2019) × × 73.2 77.0 74.2 84.4 66.7 55.3 62.9 82.0 73.2

Lindemann et al. (2019) X X 75.3 - - - - - - - -
Naseem et al. (2019) X X 75.5 80 76 86 72 56 67 83 80
Zhang et al. (2019a) X × 74.6 - - - - - - - -
Zhang et al. (2019a) X X 76.3 79.0 76.8 84.8 69.7 60.0 75.2 77.9 85.8
Zhang et al. (2019b) X X 77.0 80 78 86 71 61 77 79 86

Ours

× × 74.5 77.8 75.1 85.9 68.5 57.7 65.0 82.9 81.1
X × 77.3 80.1 77.9 86.4 69.4 58.5 75.6 78.4 86.1
× X 78.7 81.5 79.2 88.1 74.5 63.8 66.1 87.1 81.3
X X 80.2 82.8 80.8 88.1 74.2 64.6 78.9 81.1 86.3

Table 1: SMATCH scores (%) (left) and fine-grained evaluations (%) (right) on the test set of AMR 2.0. G. R./BERT
indicates whether or not the results use Graph Re-categorization/BERT respectively.

Model G. R. BERT SMATCH

Flanigan et al. (2016) × × 66.0
Pust et al. (2015) × × 67.1

Wang and Xue (2017) X × 68.1
Guo and Lu (2018) X × 68.3
Zhang et al. (2019a) X X 70.2
Zhang et al. (2019b) X X 71.3

Ours

× × 68.8
X × 71.2
× X 74.0
X X 75.4

Table 2: SMATCH scores on the test set of AMR 1.0.

most models trained on AMR 2.0. The even more
substantial performance gain on the smaller dataset
suggests that our method is both effective and data-
efficient. Besides, again, our model without BERT
already surpasses previous state-of-the-art results
using BERT. For ablated models, it can be observed
that our models yield the best results in all settings
if there are any competitors, indicating BERT and
graph re-categorization are not the exclusive key
for our superior performance.

Fine-grained Results In order to investigate
how our parser performs on individual sub-tasks,
we also use the fine-grained evaluation tool (Da-
monte et al., 2017) and compare to systems which
reported these scores.8 As shown in the right block
of Table 1, our best model obtains the highest
scores on almost all sub-tasks. The improvements
in all sub-tasks are consistent and uniform (around
2%⇠3%) compared to the previous state-of-the-art
performance (Zhang et al., 2019b), partly confirm-
ing that our model boosts performance via consol-
idated and harmonious decisions rather than fix-

8We only list the results on AMR 2.0 since there are few
results on AMR 1.0 to compare.
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ing particular phenomena. By our ablation study,
it is worth noting that the NER scores are much
lower when using graph re-categorization. This is
because the rule-based system for NER in graph re-
categorization does not generalize well to unseen
entities, which suggest a potential improvement by
adapting better NER taggers.

6.3 More Analysis
Effect of Iterative Inference We then turn to
study the effect of our key idea, namely, the it-
erative inference design. To this end, we run a set
of experiments with different values of the num-
ber of the inference steps N . The results on AMR
2.0 are shown in Figure 4 (solid line). As seen,
the performance generally goes up when the num-
ber of inference steps increases. The difference
is most noticeable between 1 (no iterative reason-
ing is performed) and 2, while later improvements
gradually diminish. One important point here is
that the model size in terms of the number of pa-
rameters is constant regardless of the number of
inference steps, making it different from general
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Unlabeled No WSD Concept SRL Reent. Neg. NER Wiki
van Noord and Bos (2017) × × 71.0 74 72 82 66 52 62 79 65
Groschwitz et al. (2018) X × 71.0 74 72 84 64 49 57 78 71

Lyu and Titov (2018) X × 74.4 77.1 75.5 85.9 69.8 52.3 58.4 86.0 75.7
Cai and Lam (2019) × × 73.2 77.0 74.2 84.4 66.7 55.3 62.9 82.0 73.2

Lindemann et al. (2019) X X 75.3 - - - - - - - -
Naseem et al. (2019) X X 75.5 80 76 86 72 56 67 83 80
Zhang et al. (2019a) X × 74.6 - - - - - - - -
Zhang et al. (2019a) X X 76.3 79.0 76.8 84.8 69.7 60.0 75.2 77.9 85.8
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× X 78.7 81.5 79.2 88.1 74.5 63.8 66.1 87.1 81.3
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Table 2: SMATCH scores on the test set of AMR 1.0.

most models trained on AMR 2.0. The even more
substantial performance gain on the smaller dataset
suggests that our method is both effective and data-
efficient. Besides, again, our model without BERT
already surpasses previous state-of-the-art results
using BERT. For ablated models, it can be observed
that our models yield the best results in all settings
if there are any competitors, indicating BERT and
graph re-categorization are not the exclusive key
for our superior performance.

Fine-grained Results In order to investigate
how our parser performs on individual sub-tasks,
we also use the fine-grained evaluation tool (Da-
monte et al., 2017) and compare to systems which
reported these scores.8 As shown in the right block
of Table 1, our best model obtains the highest
scores on almost all sub-tasks. The improvements
in all sub-tasks are consistent and uniform (around
2%⇠3%) compared to the previous state-of-the-art
performance (Zhang et al., 2019b), partly confirm-
ing that our model boosts performance via consol-
idated and harmonious decisions rather than fix-

8We only list the results on AMR 2.0 since there are few
results on AMR 1.0 to compare.
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because the rule-based system for NER in graph re-
categorization does not generalize well to unseen
entities, which suggest a potential improvement by
adapting better NER taggers.
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study the effect of our key idea, namely, the it-
erative inference design. To this end, we run a set
of experiments with different values of the num-
ber of the inference steps N . The results on AMR
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the performance generally goes up when the num-
ber of inference steps increases. The difference
is most noticeable between 1 (no iterative reason-
ing is performed) and 2, while later improvements
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that the model size in terms of the number of pa-
rameters is constant regardless of the number of
inference steps, making it different from general
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Lindemann et al. (2019) X X 75.3 - - - - - - - -
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most models trained on AMR 2.0. The even more
substantial performance gain on the smaller dataset
suggests that our method is both effective and data-
efficient. Besides, again, our model without BERT
already surpasses previous state-of-the-art results
using BERT. For ablated models, it can be observed
that our models yield the best results in all settings
if there are any competitors, indicating BERT and
graph re-categorization are not the exclusive key
for our superior performance.

Fine-grained Results In order to investigate
how our parser performs on individual sub-tasks,
we also use the fine-grained evaluation tool (Da-
monte et al., 2017) and compare to systems which
reported these scores.8 As shown in the right block
of Table 1, our best model obtains the highest
scores on almost all sub-tasks. The improvements
in all sub-tasks are consistent and uniform (around
2%⇠3%) compared to the previous state-of-the-art
performance (Zhang et al., 2019b), partly confirm-
ing that our model boosts performance via consol-
idated and harmonious decisions rather than fix-

8We only list the results on AMR 2.0 since there are few
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ing particular phenomena. By our ablation study,
it is worth noting that the NER scores are much
lower when using graph re-categorization. This is
because the rule-based system for NER in graph re-
categorization does not generalize well to unseen
entities, which suggest a potential improvement by
adapting better NER taggers.

6.3 More Analysis
Effect of Iterative Inference We then turn to
study the effect of our key idea, namely, the it-
erative inference design. To this end, we run a set
of experiments with different values of the num-
ber of the inference steps N . The results on AMR
2.0 are shown in Figure 4 (solid line). As seen,
the performance generally goes up when the num-
ber of inference steps increases. The difference
is most noticeable between 1 (no iterative reason-
ing is performed) and 2, while later improvements
gradually diminish. One important point here is
that the model size in terms of the number of pa-
rameters is constant regardless of the number of
inference steps, making it different from general
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Lyu and Titov (2018) X × 74.4 77.1 75.5 85.9 69.8 52.3 58.4 86.0 75.7
Cai and Lam (2019) × × 73.2 77.0 74.2 84.4 66.7 55.3 62.9 82.0 73.2

Lindemann et al. (2019) X X 75.3 - - - - - - - -
Naseem et al. (2019) X X 75.5 80 76 86 72 56 67 83 80
Zhang et al. (2019a) X × 74.6 - - - - - - - -
Zhang et al. (2019a) X X 76.3 79.0 76.8 84.8 69.7 60.0 75.2 77.9 85.8
Zhang et al. (2019b) X X 77.0 80 78 86 71 61 77 79 86
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× × 74.5 77.8 75.1 85.9 68.5 57.7 65.0 82.9 81.1
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× X 78.7 81.5 79.2 88.1 74.5 63.8 66.1 87.1 81.3
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indicates whether or not the results use Graph Re-categorization/BERT respectively.
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Pust et al. (2015) × × 67.1

Wang and Xue (2017) X × 68.1
Guo and Lu (2018) X × 68.3
Zhang et al. (2019a) X X 70.2
Zhang et al. (2019b) X X 71.3

Ours

× × 68.8
X × 71.2
× X 74.0
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Table 2: SMATCH scores on the test set of AMR 1.0.

most models trained on AMR 2.0. The even more
substantial performance gain on the smaller dataset
suggests that our method is both effective and data-
efficient. Besides, again, our model without BERT
already surpasses previous state-of-the-art results
using BERT. For ablated models, it can be observed
that our models yield the best results in all settings
if there are any competitors, indicating BERT and
graph re-categorization are not the exclusive key
for our superior performance.

Fine-grained Results In order to investigate
how our parser performs on individual sub-tasks,
we also use the fine-grained evaluation tool (Da-
monte et al., 2017) and compare to systems which
reported these scores.8 As shown in the right block
of Table 1, our best model obtains the highest
scores on almost all sub-tasks. The improvements
in all sub-tasks are consistent and uniform (around
2%⇠3%) compared to the previous state-of-the-art
performance (Zhang et al., 2019b), partly confirm-
ing that our model boosts performance via consol-
idated and harmonious decisions rather than fix-

8We only list the results on AMR 2.0 since there are few
results on AMR 1.0 to compare.
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ing particular phenomena. By our ablation study,
it is worth noting that the NER scores are much
lower when using graph re-categorization. This is
because the rule-based system for NER in graph re-
categorization does not generalize well to unseen
entities, which suggest a potential improvement by
adapting better NER taggers.

6.3 More Analysis
Effect of Iterative Inference We then turn to
study the effect of our key idea, namely, the it-
erative inference design. To this end, we run a set
of experiments with different values of the num-
ber of the inference steps N . The results on AMR
2.0 are shown in Figure 4 (solid line). As seen,
the performance generally goes up when the num-
ber of inference steps increases. The difference
is most noticeable between 1 (no iterative reason-
ing is performed) and 2, while later improvements
gradually diminish. One important point here is
that the model size in terms of the number of pa-
rameters is constant regardless of the number of
inference steps, making it different from general
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Groschwitz et al. (2018) X × 71.0 74 72 84 64 49 57 78 71

Lyu and Titov (2018) X × 74.4 77.1 75.5 85.9 69.8 52.3 58.4 86.0 75.7
Cai and Lam (2019) × × 73.2 77.0 74.2 84.4 66.7 55.3 62.9 82.0 73.2

Lindemann et al. (2019) X X 75.3 - - - - - - - -
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X X 80.2 82.8 80.8 88.1 74.2 64.6 78.9 81.1 86.3

Table 1: SMATCH scores (%) (left) and fine-grained evaluations (%) (right) on the test set of AMR 2.0. G. R./BERT
indicates whether or not the results use Graph Re-categorization/BERT respectively.
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Pust et al. (2015) × × 67.1

Wang and Xue (2017) X × 68.1
Guo and Lu (2018) X × 68.3
Zhang et al. (2019a) X X 70.2
Zhang et al. (2019b) X X 71.3

Ours

× × 68.8
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× X 74.0
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Table 2: SMATCH scores on the test set of AMR 1.0.

most models trained on AMR 2.0. The even more
substantial performance gain on the smaller dataset
suggests that our method is both effective and data-
efficient. Besides, again, our model without BERT
already surpasses previous state-of-the-art results
using BERT. For ablated models, it can be observed
that our models yield the best results in all settings
if there are any competitors, indicating BERT and
graph re-categorization are not the exclusive key
for our superior performance.

Fine-grained Results In order to investigate
how our parser performs on individual sub-tasks,
we also use the fine-grained evaluation tool (Da-
monte et al., 2017) and compare to systems which
reported these scores.8 As shown in the right block
of Table 1, our best model obtains the highest
scores on almost all sub-tasks. The improvements
in all sub-tasks are consistent and uniform (around
2%⇠3%) compared to the previous state-of-the-art
performance (Zhang et al., 2019b), partly confirm-
ing that our model boosts performance via consol-
idated and harmonious decisions rather than fix-

8We only list the results on AMR 2.0 since there are few
results on AMR 1.0 to compare.
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ing particular phenomena. By our ablation study,
it is worth noting that the NER scores are much
lower when using graph re-categorization. This is
because the rule-based system for NER in graph re-
categorization does not generalize well to unseen
entities, which suggest a potential improvement by
adapting better NER taggers.

6.3 More Analysis
Effect of Iterative Inference We then turn to
study the effect of our key idea, namely, the it-
erative inference design. To this end, we run a set
of experiments with different values of the num-
ber of the inference steps N . The results on AMR
2.0 are shown in Figure 4 (solid line). As seen,
the performance generally goes up when the num-
ber of inference steps increases. The difference
is most noticeable between 1 (no iterative reason-
ing is performed) and 2, while later improvements
gradually diminish. One important point here is
that the model size in terms of the number of pa-
rameters is constant regardless of the number of
inference steps, making it different from general
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indicates whether or not the results use Graph Re-categorization/BERT respectively.

Model G. R. BERT SMATCH

Flanigan et al. (2016) × × 66.0
Pust et al. (2015) × × 67.1

Wang and Xue (2017) X × 68.1
Guo and Lu (2018) X × 68.3
Zhang et al. (2019a) X X 70.2
Zhang et al. (2019b) X X 71.3

Ours

× × 68.8
X × 71.2
× X 74.0
X X 75.4

Table 2: SMATCH scores on the test set of AMR 1.0.

most models trained on AMR 2.0. The even more
substantial performance gain on the smaller dataset
suggests that our method is both effective and data-
efficient. Besides, again, our model without BERT
already surpasses previous state-of-the-art results
using BERT. For ablated models, it can be observed
that our models yield the best results in all settings
if there are any competitors, indicating BERT and
graph re-categorization are not the exclusive key
for our superior performance.

Fine-grained Results In order to investigate
how our parser performs on individual sub-tasks,
we also use the fine-grained evaluation tool (Da-
monte et al., 2017) and compare to systems which
reported these scores.8 As shown in the right block
of Table 1, our best model obtains the highest
scores on almost all sub-tasks. The improvements
in all sub-tasks are consistent and uniform (around
2%⇠3%) compared to the previous state-of-the-art
performance (Zhang et al., 2019b), partly confirm-
ing that our model boosts performance via consol-
idated and harmonious decisions rather than fix-

8We only list the results on AMR 2.0 since there are few
results on AMR 1.0 to compare.
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ing particular phenomena. By our ablation study,
it is worth noting that the NER scores are much
lower when using graph re-categorization. This is
because the rule-based system for NER in graph re-
categorization does not generalize well to unseen
entities, which suggest a potential improvement by
adapting better NER taggers.

6.3 More Analysis
Effect of Iterative Inference We then turn to
study the effect of our key idea, namely, the it-
erative inference design. To this end, we run a set
of experiments with different values of the num-
ber of the inference steps N . The results on AMR
2.0 are shown in Figure 4 (solid line). As seen,
the performance generally goes up when the num-
ber of inference steps increases. The difference
is most noticeable between 1 (no iterative reason-
ing is performed) and 2, while later improvements
gradually diminish. One important point here is
that the model size in terms of the number of pa-
rameters is constant regardless of the number of
inference steps, making it different from general
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most models trained on AMR 2.0. The even more
substantial performance gain on the smaller dataset
suggests that our method is both effective and data-
efficient. Besides, again, our model without BERT
already surpasses previous state-of-the-art results
using BERT. For ablated models, it can be observed
that our models yield the best results in all settings
if there are any competitors, indicating BERT and
graph re-categorization are not the exclusive key
for our superior performance.

Fine-grained Results In order to investigate
how our parser performs on individual sub-tasks,
we also use the fine-grained evaluation tool (Da-
monte et al., 2017) and compare to systems which
reported these scores.8 As shown in the right block
of Table 1, our best model obtains the highest
scores on almost all sub-tasks. The improvements
in all sub-tasks are consistent and uniform (around
2%⇠3%) compared to the previous state-of-the-art
performance (Zhang et al., 2019b), partly confirm-
ing that our model boosts performance via consol-
idated and harmonious decisions rather than fix-

8We only list the results on AMR 2.0 since there are few
results on AMR 1.0 to compare.

Sm
at

ch
 (%

)

55.0

62.5

70.0

77.5

85.0

Number of Inference Steps

1 2 3 4 5 6

All
(0, 15]
(15, 30]
(30, �)

Figure 4: SMATCH scores with different numbers of
inference steps. Sentences are grouped by length.

ing particular phenomena. By our ablation study,
it is worth noting that the NER scores are much
lower when using graph re-categorization. This is
because the rule-based system for NER in graph re-
categorization does not generalize well to unseen
entities, which suggest a potential improvement by
adapting better NER taggers.

6.3 More Analysis
Effect of Iterative Inference We then turn to
study the effect of our key idea, namely, the it-
erative inference design. To this end, we run a set
of experiments with different values of the num-
ber of the inference steps N . The results on AMR
2.0 are shown in Figure 4 (solid line). As seen,
the performance generally goes up when the num-
ber of inference steps increases. The difference
is most noticeable between 1 (no iterative reason-
ing is performed) and 2, while later improvements
gradually diminish. One important point here is
that the model size in terms of the number of pa-
rameters is constant regardless of the number of
inference steps, making it different from general

2.0.
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Fine-grained Results
Model G. R. BERT SMATCH

fine-grained evaluation
Unlabeled No WSD Concept SRL Reent. Neg. NER Wiki

van Noord and Bos (2017) × × 71.0 74 72 82 66 52 62 79 65
Groschwitz et al. (2018) X × 71.0 74 72 84 64 49 57 78 71

Lyu and Titov (2018) X × 74.4 77.1 75.5 85.9 69.8 52.3 58.4 86.0 75.7
Cai and Lam (2019) × × 73.2 77.0 74.2 84.4 66.7 55.3 62.9 82.0 73.2

Lindemann et al. (2019) X X 75.3 - - - - - - - -
Naseem et al. (2019) X X 75.5 80 76 86 72 56 67 83 80
Zhang et al. (2019a) X × 74.6 - - - - - - - -
Zhang et al. (2019a) X X 76.3 79.0 76.8 84.8 69.7 60.0 75.2 77.9 85.8
Zhang et al. (2019b) X X 77.0 80 78 86 71 61 77 79 86

Ours

× × 74.5 77.8 75.1 85.9 68.5 57.7 65.0 82.9 81.1
X × 77.3 80.1 77.9 86.4 69.4 58.5 75.6 78.4 86.1
× X 78.7 81.5 79.2 88.1 74.5 63.8 66.1 87.1 81.3
X X 80.2 82.8 80.8 88.1 74.2 64.6 78.9 81.1 86.3

Table 1: SMATCH scores (%) (left) and fine-grained evaluations (%) (right) on the test set of AMR 2.0. G. R./BERT
indicates whether or not the results use Graph Re-categorization/BERT respectively.

Model G. R. BERT SMATCH

Flanigan et al. (2016) × × 66.0
Pust et al. (2015) × × 67.1

Wang and Xue (2017) X × 68.1
Guo and Lu (2018) X × 68.3
Zhang et al. (2019a) X X 70.2
Zhang et al. (2019b) X X 71.3

Ours

× × 68.8
X × 71.2
× X 74.0
X X 75.4

Table 2: SMATCH scores on the test set of AMR 1.0.

most models trained on AMR 2.0. The even more
substantial performance gain on the smaller dataset
suggests that our method is both effective and data-
efficient. Besides, again, our model without BERT
already surpasses previous state-of-the-art results
using BERT. For ablated models, it can be observed
that our models yield the best results in all settings
if there are any competitors, indicating BERT and
graph re-categorization are not the exclusive key
for our superior performance.

Fine-grained Results In order to investigate
how our parser performs on individual sub-tasks,
we also use the fine-grained evaluation tool (Da-
monte et al., 2017) and compare to systems which
reported these scores.8 As shown in the right block
of Table 1, our best model obtains the highest
scores on almost all sub-tasks. The improvements
in all sub-tasks are consistent and uniform (around
2%⇠3%) compared to the previous state-of-the-art
performance (Zhang et al., 2019b), partly confirm-
ing that our model boosts performance via consol-
idated and harmonious decisions rather than fix-

8We only list the results on AMR 2.0 since there are few
results on AMR 1.0 to compare.
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Figure 4: SMATCH scores with different numbers of
inference steps. Sentences are grouped by length.

ing particular phenomena. By our ablation study,
it is worth noting that the NER scores are much
lower when using graph re-categorization. This is
because the rule-based system for NER in graph re-
categorization does not generalize well to unseen
entities, which suggest a potential improvement by
adapting better NER taggers.

6.3 More Analysis
Effect of Iterative Inference We then turn to
study the effect of our key idea, namely, the it-
erative inference design. To this end, we run a set
of experiments with different values of the num-
ber of the inference steps N . The results on AMR
2.0 are shown in Figure 4 (solid line). As seen,
the performance generally goes up when the num-
ber of inference steps increases. The difference
is most noticeable between 1 (no iterative reason-
ing is performed) and 2, while later improvements
gradually diminish. One important point here is
that the model size in terms of the number of pa-
rameters is constant regardless of the number of
inference steps, making it different from general

Table 3 : Fine-grained results on the test set of AMR 2.0.
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Effect of Iterative Inference
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https://github.com/jcyk/AMR-gs 
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