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Background

e Abstract Meaning Representation (AMR)
e rooted, labeled, and directed acyclic graph
e nodes represent concepts

e cdges represent relations

During a time of prosperity and happiness,
such a big earthquake suddenly struck.




Background

During a time of prosperity and happiness,

e Abstract Meaning Representation (AMR) such a big earthquake suddenly struck.

* Named Entity Recognition @

. . ARG2 time manner
e Word Sense Disambiguation

e Semantic Role Labeling
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e Coreference Resolution



Challenges

ARG2 time manner
carthquake
During a time of prosperity and happiness, _ @
. AMR Parsing
such a big earthquake suddenly struck. op2

e Concept Prediction:
e No explicit alignment of graph nodes and sentence tokens
e Large and sparse concept vocabulary vs. Limited training data
e Relation Prediction:

* Frequent reentrancies and non-projective arcs
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Existing Work

e Two-stage Parsing (Flanigan et al., 2014; Lyu and Titov, 2018; Zhang et al.,
2019a)

e first predict all concepts
e then predict all relations

e One-stage Parsing (Wang et al., 2016; Damonte et al., 2017; Ballesteros and
Al-Onaizan, 2017; Peng et al., 2017; Guo and Lu, 2018; Liu et al., 2018; Wang
and Xue, 2017; Naseem et al., 2019; Barzdins and Gosko, 2016; Konstas et al.,
201°7; van Noord and Bos, 2017; Peng et al., 2018; Cai and Lam, 2019; Zhang et
al.,2019b)

e Construct a parse graph incrementally

e Grammar-based Parsing (Peng et al., 2015;Pust et al., 2015;Artzi et al., 2015;
Groschwitz et al., 2018; Lindemann et al., 2019)



Existing Work

e [wo-stage Parsing (Flanigan et al., 2014; Ly and Titov, 2018; Zhang et al., 2019a)

 Pipeline: concept prediction -> relation prediction

 One-stage Parsing

® TranSitiOn'based (Wang et al., 2016; Damonte et al., 2017; Ballesteros and Al-

Onaizan, 2017; Peng et al., 2017; Guo and Lu, 2018; Liu et al., 2018; Wang and Xue, 2017;
Naseem et al., 2019)

 |nsert node and build edge sequentially

¢ SquSeq-based (Barzdins and Gosko, 2016; Konstas et al., 2017; van Noord and Bos,
2017; Peng et al., 2018)

* Nodes and edges are mixed in the same output space

¢ Graph—based (Cai and Lam, 2019; Zhang et al., 2019b)

e A new node and its connections to existing nodes are jointly decoded in order or in
parallel.



Motivation

Our hypothesis for unsatisfactory parsing accuracy:
The lack of the modeling capability of the interactions between concept
prediction and relation prediction

Concept Prediction Relation Prediction
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Model Overview
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Model Overview

Which part of the input

, ARG2 sequence to abstract?
obligate-01 g0-02 Step2
Where in the output graph to

The boy must not go construct the new concept?
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Model Overview

W: the input sentence
G': the current graph
X,. the t-th hypothesis for where to construct (relation prediction)

y,: the 7-th hypothesis for what to abstract (concept prediction)
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Sequence Encoder
Graph Encoder
Relation Solver

Concept Solver

The boy wants

Model Components

text memory

graph memory

the girl to S
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Model Components

| x Relation Solver
1

Sequence Encoder

A5

attention

Graph Encoder

Relation Solver — f( -)

Yi+1 Xy

\ 4

) y Concept Solver
t
The boy wants
Concept Solver — g( ) the girl to
believe him.
'1 attention

xo = [(G' z0) = 11 — g(W,y1) = 21 — f(G',21) —
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Relation Solver

Current

Graph \

Relation , Relation

Cq ¢y
Solver Prediction O 0O
/ predict l'. )
vy
Concept O
Taldl new concept
Prediction s31 0.1 | 0.1 0.05 b——|
Figure 3: Multi-head attention for relation identifica-
Relati tion. At left is the attention matrix, where each column
x elation Solver ] ,
t corresponds to a unique attention head, and each row
|:| corresponds to an existing node.
attention
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Concept Solver

Input
Sentence\ Copy mechanisms
0: generate from the concept vocabulary
Concept|__, Concept 1: copy the lemma |
Solver Prediction 2: copy the token string
Relation
Prediction P(C) =po - P (c )
(D i) +pa- () i),
i€ L(c) i€T(c)
Concept Solver where [i| indexes the i-th element and L(c) and
1 T'(c) are index sets of lemmas and tokens respec
The boy wants tively that have the surface form as c.
the girl to
believe him.
attention

15



Experiment Setup

e AMR2.0 (LDC2017T10)
e The latest AMR sembank

e ~37K, ~1K, and ~1K sentences in the training, development,
and testing sets respectively

e AMR1.0 (LDC2014T12)
e Same dev and test with AMR2.0, ~10K training sentences

e good testbed to evaluate our model’s sensitivity for data size
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Evaluation Metrics

e Smatch (Cai and Knight, 2013) : seeks the maximum
overlap after transforming graph into relation triples.

* Fine-grained metrics (Damonte et al, 2017) for
individual sub-tasks.

e NER, SRL, reentrancies, ...
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Ablation

(settings)

 Graph Re-categorization

e BERT
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Graph Re-categorization

ARG3-of unit quant

— ) — _—
temporal-quantity rate-entity-91

\/ recategorize
@ty% (annual-01)

* Non-trivial. It requires exhaustive screening and expert-
level manual efforts.

* The precise set of re-categorization rules differs among
different models.
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BERT

BERT Embeddings
N

r N\

Average Average
Pooling Pooling
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BERT )
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(
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t v t t
T

Wordpiece Tokenizer

(
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The victim could help himself

Figure 4: Word-level embeddings from BERT.

* left figure is from (Zhang et al., 2019a)
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Settings

Model G.R. | BERT | SMATCH
van Noord and Bos (2017) X X 71.0 Model G R. | BERT | SMATCH
Groschwitz et al. (2018) v X 71.0 Flanigan et al. (2016) X X 66.0
Lyu and Titov (2018) v X 74.4 p 1. (201
Cai and Lam (2019) <« | x | 732 ust et al. (2015) * x| o7l
. Wang and Xue (2017) v X 68.1
Lindemann et al. (2019) v v 75.3 Guo and Lu (2018) % 9 63 3
Naseem et al. (2019) v v 75.5 '
Zhang et al. (2019a) v v 70.2
Zhang et al. (2019a) v X 74.6 7h L (2019b v v 713
Zhang et al. (2019a) oI v | 763 ang et al. (2019b) -
Zhang et al. (2019b) v v 77.0

Table 2: SMATCH scores on the test set of AMR 1.0.
Table 1: SMATCH scores on the test set of AMR 2.0.
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Settings

Model G.R. | BERT | SMATCH
van Noord and Bos (2017) X X 71.0 Model G R. | BERT | SMATCH
Groschwitz et al. (2018) v X 71.0 Flanigan et al. (2016) X X 66.0
Lyu and Titov (2018) v X 74.4 p 1. (201
Cai and Lam (2019) <« | x | 732 ust et al. (2015) * x| o7l
. Wang and Xue (2017) v X 68.1
Lindemann et al. (2019) v v 75.3 Guo and Lu (2018) % 9 63 3
Naseem et al. (2019) v v 75.5 '
7h Zhang et al. (2019a) v v 70.2
ang et al. (2019a) v X 74.6 7h L (2019b v v 713
Zhang et al. (2019a) oI v | 763 ang et al. (2019b) -
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X X Ours >
% 5 X v
Ours 9 v v v
v v

Table 2: SMATCH scores on the test set of AMR 1.0.
Table 1: SMATCH scores on the test set of AMR 2.0.
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Main Results

Model G.R. | BERT | SMATCH
van Noord and Bos (2017) X X 71.0 Model G R. | BERT | SMATCH

Groschwitz et al. (2018) v X 71.0 Flanigan et al. (2016) X X 66.0
Lyuand Titoy (2018) =) v" | x ) 744 Pustetal. (2015) | x | x | 67.1
.Ca1 and Lam (2019) % % 73.2 Wang and Xue (2017) v X 68.1
Lindemann et al. (2019) v v 75.3 Guo and Lu (2018) % 9 63 3
Naseem et al. (2019) v v 75.5 7h tal. (2019 Y v 70'2

Zhang et al. (2019a) |l x| 746 ang et al. (2019a) '
Zhang et al. (2019a) % % 76.3 Zhang et al. (2019b) v v 71.3
Zhang et al. (2019b) v | v 77.0 X X 68.8
X X 74.5 ours v X 71.2
Oure v | x 77.3 +3.2 X v 74.0
X v 78.7 v v 75.4

v v 80.2

Table 2: SMATCH scores on the test set of AMR 1.0.
Table 1: SMATCH scores on the test set of AMR 2.0.
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Main Results

Model G.R. | BERT | SMATCH
van Noord and Bos (2017) X X 71.0 Model G.R. | BERT | smaTcu

Groschwitz et al. (2018) v X 71.0 Flanigan et al. (2016) X X 66.0
Lyu and Titov (2018) v X 74.4 Pust et al. (2015) X x 67.1
Cai and Lam (2019) X X 73.2 Wang and Xue (2017) | v X 68.1
Lindemann et al. (2019) v v 75.3 Guo and Lu (2018) % 5 68.3
Naseem et al. (2019) v v 75.5 Zhang et al. (20192) v v 70'2
Zhang et al. (2019a) V| x| 746 St IR R

Zhang et al. (2019a) | v 76.3 ang et al. ( ) :
Zhang et al. (2019b) | v 770 N +0.3 w/o BERT X % 03.8
X X 74.5 ) Ours v X 71.2
e v 9 77 3 X v 74.0
9 v 78 7 v v 75.4

v v 80.2

Table 2: SMATCH scores on the test set of AMR 1.0.
Table 1: SMATCH scores on the test set of AMR 2.0.

24



Main Results

Model G.R. | BERT | SMATCH
van Noord and Bos (2017) X X 71.0 Model G R. | BERT | SMATCH

Groschwitz et al. (2018) v X 71.0 Flanigan et al. (2016) X X 66.0

Lyuand Titoy (2018) =) v" | x ) 744 Pustetal. (2015 | x | x | 67.1

.Ca1 and Lam (2019) % % 73.2 Wang and Xue (2017) v X 68.1

Lindemann et al. (2019) v v 75.3 Guo and Lu (2018) % 9 63 3

Naseem et al. (2019) v v 75.5, 7h 1 (2019 Y v 70'2
Zhang et al. (2019a) v olox | 746 ang et al. (2015a) 2 +4.1

Zhang et al. (20192) ol v | 183 Zhangetal. (201%) | v | v | 713

Zhang et al. (2019b) v | v 770 X X 68.8

X X 74.5 . ours v X 71.2

Ours N4 % 77.3 \\\. X v 74.0

X v 787 el 4 v 75.4

v v 80.2 comparable with models on AMR2.0

Table 1: SMATCH scores on the test set of AMR 2.0.
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Main Results

Model G.R. | BERT
van Noord and Bos (2017) X X
Groschwitz et al. (2018) v X
Lyu and Titov (2018) Vo X
Cai and Lam (2019) CoX X |
Lindemann et al. (2019) v v
Naseem et al. (2019) Y v
Zhang et al. (2019a) AN X
Zhang et al. (2019a) v v
Zhang et al. (2019b) v v
X X ..
A X
Ours ” Y
v v

Model G.R. | BERT | SMATCH
Flanigan et al. (2016) X X 66.0
Pust et al. (2015) Cx | X | 67.1:
Wang and Xue (2017) | v | x| _68.1
Guo and Lu (2018) Rann X | 68.3:
Zhang et al. (2019a) v v 70.2
Zhangetal. (2019b) | v | . ol 71.3
LK) 08817
Ours R X - 71.2;
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v v 75.4

Table 1: SMATCH scores on the test set of AMR 2.0.

Table 2: SMATCH scores on the test set of AMR 1.0.



Fine-grained Results

: fine-grained evaluation :

Model G.R. | BERT | SMATCH .

1 Unlabeled | No WSD | Concept SRL Reent. Neg. NER Wiki !

van Noord and Bos (2017) X X 71.0 ' 74 72 82 66 52 62 79 65 |
Groschwitz et al. (2018) v X 71.0 | 74 72 84 64 49 57 78 71 .
Lyu and Titov (2018) v X 744 | T7.1 75.5 85.9 69.8 | 52.3 | 584 | 86.0 | 75.7 .
Cai and Lam (2019) X X 73.2 77.0 74.2 84.4 66.7 | 553 | 629 | 82.0 | 73.2
Lindemann et al. (2019) v v 753 |l - - - - - - - - :
Naseem et al. (2019) v v 75.5 80 76 86 72 56 67 83 80
Zhang et al. (2019a) v X 74.6 | - - - - - - - - :
Zhang et al. (2019a) v v 76.3 79.0 76.8 84.8 69.7 | 60.0 | 752 | 779 | 85.8
Zhang et al. (2019b) v v 77.0 | 80 78 86 71 61 77 79 86
X X 745 | 718 75.1 85.9 68.5 | 57.7 | 65.0 | 829 | 81.1

Ours v X 77.3 80.1 71.9 86.4 69.4 | 58.5 | 75.6 | 784 | 86.1

X v 787 | 815 79.2 88.1 74.5 | 63.8 | 66.1 | 87.1 | 81.3 .

v v 80.2 |1 828 80.8 88.1 742 | 64.6 | 789 | 81.1 | 86.3

Table 3 : Fine-grained results on the test set of AMR 2.0.
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Effect of lterative Inference

Smatch (%)

85.0
_______________________________ oAt e e
775 - -
70.0
O All
62.5 ¢ o (.15
-------------------------------------------------------------------------------------------------- v- (15,30] |
(30, )
550
‘ 2 3 4 5 6

Number of Inference Steps
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AMR Parsing via
GraphS Sequence lterative Inference

Thanks!

Deng Cai and Wai Lam
The Chinese University of Hong Kong

https://github.com/jcyk/AMR-gs
thisisicykcd@gmail.com
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