
Graph Transformer for
Graph-to-Sequence Learning

Deng Cai and Wai Lam

The Chinese University of Hong Kong

AAAI2020

Background

• Graphical structure in natural language
processing (NLP)

• Syntax

• Semantics

• Knowledge

Background

• Graphical structure in natural language
processing (NLP)

• Syntax

• Semantics

• Knowledge

e.g., Dependency Tree

The monkey eats a banana

det nsubj
dobj

det

Figure 1: A dependency tree for the example sen-
tence: “The monkey eats a banana.”

th order neighborhood (i.e. nodes at most k hops
aways from the node) (Gilmer et al., 2017). They
are generally simple and computationally inexpen-
sive. We use Syntactic GCNs, a version of GCN
operating on top of syntactic dependency trees, re-
cently shown effective in the context of semantic
role labeling (Marcheggiani and Titov, 2017).

Since syntactic GCNs produce representations
at word level, it is straightforward to use them
as encoders within the attention-based encoder-
decoder framework. As NMT systems are trained
end-to-end, GCNs end up capturing syntactic
properties specifically relevant to the translation
task. Though GCNs can take word embeddings
as input, we will see that they are more effec-
tive when used as layers on top of recurrent neu-
ral network (RNN) or convolutional neural net-
work (CNN) encoders (Gehring et al., 2016), en-
riching their states with syntactic information.
A comparison to RNNs is the most challenging
test for GCNs, as it has been shown that RNNs
(e.g., LSTMs) are able to capture certain syntac-
tic phenomena (e.g., subject-verb agreement) rea-
sonably well on their own, without explicit tree-
bank supervision (Linzen et al., 2016; Shi et al.,
2016). Nevertheless, GCNs appear beneficial even
in this challenging set-up: we obtain +1.2 and +0.7
BLEU point improvements from using syntactic
GCNs on top of bidirectional RNNs for English-
German and English-Czech, respectively.

In principle, GCNs are flexible enough to incor-
porate any linguistic structure as long as they can
be represented as graphs (e.g., dependency-based
semantic-role labeling representations (Surdeanu
et al., 2008), AMR semantic graphs (Banarescu
et al., 2012) and co-reference chains). For ex-
ample, unlike recursive neural networks (Socher
et al., 2013), GCNs do not require the graphs to be
trees. However, in this work we solely focus on
dependency syntax and leave more general inves-
tigation for future work.

Our main contributions can be summarized as
follows:

• we introduce a method for incorporating
structure into NMT using syntactic GCNs;

• we show that GCNs can be used along with
RNN and CNN encoders;

• we show that incorporating structure is ben-
eficial for machine translation on English-
Czech and English-German.

2 Background

Notation. We use x for vectors, x1:t for a se-
quence of t vectors, and X for matrices. The i-th
value of vector x is denoted by xi. We use � for
vector concatenation.

2.1 Neural Machine Translation

In NMT (Kalchbrenner and Blunsom, 2013;
Sutskever et al., 2014; Cho et al., 2014b), given
example translation pairs from a parallel corpus, a
neural network is trained to directly estimate the
conditional distribution p(y1:Ty |x1:Tx) of translat-
ing a source sentence x1:Tx (a sequence of Tx

words) into a target sentence y1:Ty . NMT mod-
els typically consist of an encoder, a decoder and
some method for conditioning the decoder on the
encoder, for example, an attention mechanism. We
will now briefly describe the components that we
use in this paper.

2.1.1 Encoders

An encoder is a function that takes as input the
source sentence and produces a representation en-
coding its semantic content. We describe recur-
rent, convolutional and bag-of-words encoders.

Recurrent. Recurrent neural networks (RNNs)
(Elman, 1990) model sequential data. They re-
ceive one input vector at each time step and up-
date their hidden state to summarize all inputs up
to that point. Given an input sequence x1:Tx =
x1,x2, . . . ,xTx of word embeddings an RNN is
defined recursively as follows:

RNN(x1:t) = f(xt, RNN(x1:t�1))

where f is a nonlinear function such as an LSTM
(Hochreiter and Schmidhuber, 1997) or a GRU
(Cho et al., 2014b). We will use the function RNN
as an abstract mapping from an input sequence
x1:T to final hidden state RNN(x1:Tx), regardless
of the used nonlinearity. To not only summarize
the past of a word, but also its future, a bidirec-
tional RNN (Schuster and Paliwal, 1997; Irsoy and

1958

figure from Basting et al, 2017

Background

• Graphical structure in natural language
processing (NLP)

• Syntax

• Semantics

• Knowledge

e.g., Abstract Meaning Representation (AMR)

Graph Transformer for Graph-to-Sequence Learning⇤

Deng Cai and Wai Lam
The Chinese University of Hong Kong

thisisjcykcd@gmail.com, wlam@se.cuhk.edu.hk

Abstract

The dominant graph-to-sequence transduction models em-
ploy graph neural networks for graph representation learning,
where the structural information is reflected by the receptive
field of neurons. Unlike graph neural networks that restrict
the information exchange between immediate neighborhood,
we propose a new model, known as Graph Transformer, that
uses explicit relation encoding and allows direct communica-
tion between two distant nodes. It provides a more efficient
way for global graph structure modeling. Experiments on the
applications of text generation from Abstract Meaning Rep-
resentation (AMR) and syntax-based neural machine transla-
tion show the superiority of our proposed model. Specifically,
our model achieves 27.4 BLEU on LDC2015E86 and 29.7
BLEU on LDC2017T10 for AMR-to-text generation, outper-
forming the state-of-the-art results by up to 2.2 points. On
the syntax-based translation tasks, our model establishes new
single-model state-of-the-art BLEU scores, 21.3 for English-
to-German and 14.1 for English-to-Czech, improving over
the existing best results, including ensembles, by over 1
BLEU.

Introduction
Graphical structure plays an important role in natural lan-
guage processing (NLP), they often serve as the central for-
malism for representing syntax, semantics, and knowledge.
For example, most syntactic representations (e.g., depen-
dency relation) are tree-based while most whole-sentence
semantic representation frameworks (e.g., Abstract Mean-
ing Representation (AMR) (Banarescu et al. 2013)) encode
sentence meaning as directed acyclic graphs. A range of
NLP applications can be framed as the process of graph-
to-sequence learning. For instance, text generation may in-
volve realizing a semantic graph into a surface form (Liu
et al. 2015) and syntactic machine translation incorporates
source-side syntax information for improving translation
quality (Bastings et al. 2017). Fig. 1 gives an example of
AMR-to-text generation.

⇤The work described in this paper is substantially supported by
a grant from the Research Grant Council of the Hong Kong Special
Administrative Region, China (Project Code: 14204418).
Copyright c� 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

boy

girl

The boy wants the girl to believe him.

boy

girl

want-01

believe-01

want-01

believe-01

ARG1

ARG0

ARG0

ARG1

ARG1
ARG0

ARG1

ARG0

Figure 1: An AMR graph (left) for the reference sentence
“The boy wants the girl to believe him.” and the correspond-
ing Levi graph (right).

While early work uses statistical methods or neural mod-
els after the linearization of graphs, graph neural networks
(GNNs) have been firmly established as the state-of-the-
art approaches for this task (Damonte and Cohen 2019;
Guo et al. 2019). GNNs typically compute the represen-
tation of each node iteratively based on those of its adja-
cent nodes. This inherently local propagation nature pre-
cludes efficient global communication, which becomes crit-
ical at larger graph sizes, as the distance between two nodes
exceeds the number of stacked layers. For instance, for
two nodes staying L hops away, at least L layers will be
needed in order to capture their dependencies. Furthermore,
even if two distant nodes are reachable, the information
may also be disrupted in the long journey (Xu et al. 2018;
Guo et al. 2019).

To address the above problems, we propose a new model,
known as Graph Transformer, which relies entirely on the
multi-head attention mechanism (Vaswani et al. 2017) to
draw global dependencies.1 Different to GNNs, the Graph
Transformer allows direct modeling of dependencies be-
tween any two nodes without regard to their distance in the
input graph. One undesirable consequence is that it essen-

1We note that the name Graph Transformer was used in a recent
work (Koncel-Kedziorski et al. 2019). However, it merely focuses
on the relations between directly connected nodes as other graph
neural networks.

The boy wants the
girl to believe him.

Graph-to-Sequence
• Syntactic machine translation

The monkey eats a banana

det nsubj
dobj

det

Figure 1: A dependency tree for the example sen-
tence: “The monkey eats a banana.”

th order neighborhood (i.e. nodes at most k hops
aways from the node) (Gilmer et al., 2017). They
are generally simple and computationally inexpen-
sive. We use Syntactic GCNs, a version of GCN
operating on top of syntactic dependency trees, re-
cently shown effective in the context of semantic
role labeling (Marcheggiani and Titov, 2017).

Since syntactic GCNs produce representations
at word level, it is straightforward to use them
as encoders within the attention-based encoder-
decoder framework. As NMT systems are trained
end-to-end, GCNs end up capturing syntactic
properties specifically relevant to the translation
task. Though GCNs can take word embeddings
as input, we will see that they are more effec-
tive when used as layers on top of recurrent neu-
ral network (RNN) or convolutional neural net-
work (CNN) encoders (Gehring et al., 2016), en-
riching their states with syntactic information.
A comparison to RNNs is the most challenging
test for GCNs, as it has been shown that RNNs
(e.g., LSTMs) are able to capture certain syntac-
tic phenomena (e.g., subject-verb agreement) rea-
sonably well on their own, without explicit tree-
bank supervision (Linzen et al., 2016; Shi et al.,
2016). Nevertheless, GCNs appear beneficial even
in this challenging set-up: we obtain +1.2 and +0.7
BLEU point improvements from using syntactic
GCNs on top of bidirectional RNNs for English-
German and English-Czech, respectively.

In principle, GCNs are flexible enough to incor-
porate any linguistic structure as long as they can
be represented as graphs (e.g., dependency-based
semantic-role labeling representations (Surdeanu
et al., 2008), AMR semantic graphs (Banarescu
et al., 2012) and co-reference chains). For ex-
ample, unlike recursive neural networks (Socher
et al., 2013), GCNs do not require the graphs to be
trees. However, in this work we solely focus on
dependency syntax and leave more general inves-
tigation for future work.

Our main contributions can be summarized as
follows:

• we introduce a method for incorporating
structure into NMT using syntactic GCNs;

• we show that GCNs can be used along with
RNN and CNN encoders;

• we show that incorporating structure is ben-
eficial for machine translation on English-
Czech and English-German.

2 Background

Notation. We use x for vectors, x1:t for a se-
quence of t vectors, and X for matrices. The i-th
value of vector x is denoted by xi. We use � for
vector concatenation.

2.1 Neural Machine Translation

In NMT (Kalchbrenner and Blunsom, 2013;
Sutskever et al., 2014; Cho et al., 2014b), given
example translation pairs from a parallel corpus, a
neural network is trained to directly estimate the
conditional distribution p(y1:Ty |x1:Tx) of translat-
ing a source sentence x1:Tx (a sequence of Tx

words) into a target sentence y1:Ty . NMT mod-
els typically consist of an encoder, a decoder and
some method for conditioning the decoder on the
encoder, for example, an attention mechanism. We
will now briefly describe the components that we
use in this paper.

2.1.1 Encoders

An encoder is a function that takes as input the
source sentence and produces a representation en-
coding its semantic content. We describe recur-
rent, convolutional and bag-of-words encoders.

Recurrent. Recurrent neural networks (RNNs)
(Elman, 1990) model sequential data. They re-
ceive one input vector at each time step and up-
date their hidden state to summarize all inputs up
to that point. Given an input sequence x1:Tx =
x1,x2, . . . ,xTx of word embeddings an RNN is
defined recursively as follows:

RNN(x1:t) = f(xt, RNN(x1:t�1))

where f is a nonlinear function such as an LSTM
(Hochreiter and Schmidhuber, 1997) or a GRU
(Cho et al., 2014b). We will use the function RNN
as an abstract mapping from an input sequence
x1:T to final hidden state RNN(x1:Tx), regardless
of the used nonlinearity. To not only summarize
the past of a word, but also its future, a bidirec-
tional RNN (Schuster and Paliwal, 1997; Irsoy and

1958

translate
猴⼦子吃了了⼀一个⾹香蕉

Graph-to-Sequence
• AMR-to-text generation

Graph Transformer for Graph-to-Sequence Learning⇤

Deng Cai and Wai Lam
The Chinese University of Hong Kong

thisisjcykcd@gmail.com, wlam@se.cuhk.edu.hk

Abstract

The dominant graph-to-sequence transduction models em-
ploy graph neural networks for graph representation learning,
where the structural information is reflected by the receptive
field of neurons. Unlike graph neural networks that restrict
the information exchange between immediate neighborhood,
we propose a new model, known as Graph Transformer, that
uses explicit relation encoding and allows direct communica-
tion between two distant nodes. It provides a more efficient
way for global graph structure modeling. Experiments on the
applications of text generation from Abstract Meaning Rep-
resentation (AMR) and syntax-based neural machine transla-
tion show the superiority of our proposed model. Specifically,
our model achieves 27.4 BLEU on LDC2015E86 and 29.7
BLEU on LDC2017T10 for AMR-to-text generation, outper-
forming the state-of-the-art results by up to 2.2 points. On
the syntax-based translation tasks, our model establishes new
single-model state-of-the-art BLEU scores, 21.3 for English-
to-German and 14.1 for English-to-Czech, improving over
the existing best results, including ensembles, by over 1
BLEU.

Introduction
Graphical structure plays an important role in natural lan-
guage processing (NLP), they often serve as the central for-
malism for representing syntax, semantics, and knowledge.
For example, most syntactic representations (e.g., depen-
dency relation) are tree-based while most whole-sentence
semantic representation frameworks (e.g., Abstract Mean-
ing Representation (AMR) (Banarescu et al. 2013)) encode
sentence meaning as directed acyclic graphs. A range of
NLP applications can be framed as the process of graph-
to-sequence learning. For instance, text generation may in-
volve realizing a semantic graph into a surface form (Liu
et al. 2015) and syntactic machine translation incorporates
source-side syntax information for improving translation
quality (Bastings et al. 2017). Fig. 1 gives an example of
AMR-to-text generation.

⇤The work described in this paper is substantially supported by
a grant from the Research Grant Council of the Hong Kong Special
Administrative Region, China (Project Code: 14204418).
Copyright c� 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

boy

girl

The boy wants the girl to believe him.

boy

girl

want-01

believe-01

want-01

believe-01

ARG1

ARG0

ARG0

ARG1

ARG1
ARG0

ARG1

ARG0

Figure 1: An AMR graph (left) for the reference sentence
“The boy wants the girl to believe him.” and the correspond-
ing Levi graph (right).

While early work uses statistical methods or neural mod-
els after the linearization of graphs, graph neural networks
(GNNs) have been firmly established as the state-of-the-
art approaches for this task (Damonte and Cohen 2019;
Guo et al. 2019). GNNs typically compute the represen-
tation of each node iteratively based on those of its adja-
cent nodes. This inherently local propagation nature pre-
cludes efficient global communication, which becomes crit-
ical at larger graph sizes, as the distance between two nodes
exceeds the number of stacked layers. For instance, for
two nodes staying L hops away, at least L layers will be
needed in order to capture their dependencies. Furthermore,
even if two distant nodes are reachable, the information
may also be disrupted in the long journey (Xu et al. 2018;
Guo et al. 2019).

To address the above problems, we propose a new model,
known as Graph Transformer, which relies entirely on the
multi-head attention mechanism (Vaswani et al. 2017) to
draw global dependencies.1 Different to GNNs, the Graph
Transformer allows direct modeling of dependencies be-
tween any two nodes without regard to their distance in the
input graph. One undesirable consequence is that it essen-

1We note that the name Graph Transformer was used in a recent
work (Koncel-Kedziorski et al. 2019). However, it merely focuses
on the relations between directly connected nodes as other graph
neural networks.

The boy wants the girl to believe him.

Existing Work

• Grammar-based methods (Jones et al., 2012; Flanigan et al., 2016; Song et
al., 2016; Song et al., 2017)

• use specialized graph-to-string transduction rules.

• Seq2Seq-based methods (Pourdamghani, Knight, and Hermjakob 2016;
Konstas et al. 2017)

• treat graph as sequence by linearizing input graphs.

• Graph neural network-based methods (Beck, Haffari, and Cohn
2018; Song et al., 2018; Basting et al, 2017; Damonte and Cohen, 2019; Guo et al., 2019;
Koncel-Kedziorski et al 2019)

• Directly and explicitly model the graph structure.

Existing Work
• Graph neural network based methods (Beck, Haffari, and Cohn 2018;

Song et al., 2018; Basting et al, 2017; Damonte and Cohen, 2019; Guo et al., 2019; Koncel-
Kedziorski et al, 2019)

• previous SOTA

• compute the representation of each node iteratively
based on those of its adjacent nodes.

1618

Time

Figure 2: Graph state LSTM.

LSTM model to update its hidden state. Then the
attention probability αt,i on the attention vector
ai ∈ A for the time-step is calculated as:

ϵt,i = vT2 tanh(Waai +Wsst +Wγγt� 1 + b2)

αt,i =
exp(ϵt,i)∑N
j=1 exp(ϵt,j)

where Wa, Ws, Wγ , v2 and b2 are model pa-
rameters. The coverage vector γt is updated by
γt = γt� 1 + αt, and the new context vector µt is
calculated via µt =

∑N
i=1 αt,iai.

The output probability distribution over a vo-
cabulary at the current state is calculated by:

Pvocab = softmax(V3[st, µt] + b3), (5)

where V3 and b3 are learnable parameters, and the
number of rows in V3 represents the number of
words in the vocabulary.

3 The graph-to-sequence model

Unlike the baseline sequence-to-sequence model,
we leverage a recurrent graph encoder to represent
each input AMR, which directly models the graph
structure without serialization.

3.1 The graph encoder
Figure 2 shows the overall structure of our graph
encoder. Formally, given a graph G = (V,E),
we use a hidden state vector hj to represent each
node vj ∈ V . The state of the graph can thus be
represented as:

g = {hj}|vj∈V

In order to capture non-local interaction between
nodes, we allow information exchange between
nodes through a sequence of state transitions,
leading to a sequence of states g0, g1, . . . , gt, . . . ,
where gt = {hjt}|vj∈V . The initial state g0 con-
sists of a set of initial node states hj0 = h0, where
h0 is a hyperparameter of the model.

State transition A recurrent neural network
is used to model the state transition process. In
particular, the transition from gt� 1 to gt consists of
a hidden state transition for each node, as shown
in Figure 2. At each state transition step t, we
allow direct communication between a node and
all nodes that are directly connected to the node.
To avoid gradient diminishing or bursting, LSTM
(Hochreiter and Schmidhuber, 1997) is adopted,
where a cell cjt is taken to record memory for hjt .
We use an input gate ijt , an output gate ojt and a
forget gate f j

t to control information flow from the
inputs and to the output hjt .

The inputs include representations of edges that
are connected to vj , where vj can be either the
source or the target of the edge. We define each
edge as a triple (i, j, l), where i and j are indices
of the source and target nodes, respectively, and l
is the edge label. xli,j is the representation of edge
(i, j, l), detailed in Section 3.3. The inputs for vj
are distinguished by incoming and outgoing edges,
before being summed up:

xij =
∑

(i,j,l)∈Ein(j)

xli,j

xoj =
∑

(j,k,l)∈Eout(j)

xlj,k,

where Ein(j) and Eout(j) denote the sets of in-
coming and outgoing edges of vj , respectively.

In addition to edge inputs, a cell also takes the
hidden states of its incoming nodes and outgoing
nodes during a state transition. In particular, the
states of all incoming nodes and outgoing nodes
are summed up before being passed to the cell and
gate nodes:

hij =
∑

(i,j,l)∈Ein(j)

hit� 1

hoj =
∑

(j,k,l)∈Eout(j)

hkt� 1,

Based on the above definitions of xij , x
o
j , hij and

hoj , the state transition from gt� 1 to gt, as repre-

figure from Song et al., 2018

Existing Work
• Graph neural network based methods (Beck, Haffari, and Cohn 2018;

Song et al., 2018; Basting et al, 2017; Damonte and Cohen, 2019; Guo et al., 2019; Koncel-
Kedziorski et al, 2019)

shortest paths
Relation Encoder

want-01

believe-01

boy

girl

…

ARG0

ARG1

ARG0

ARG1

Graph Encoder Sequence Decoder

Self-Attention

Attention

+
+Position

Embedding

Node
Embedding Token

Embedding

Position
Embedding

Different colors represent different
shortest paths among node pairs.

Relation-Enhanced
Global Attention

Node Initialization

Output

. . .

(fully-connected view)

Figure 2: An overview of our proposed model.

feed-forward layers, residual connection, and layer normal-
ization.2 For brevity, we will denote the whole procedure
described above as a single function ATT(x, y1:m).

For an input sequence x1:n, the SAN-based encoder
computes the vector representations iteratively by x

L
i =

ATT(xL
i , x

L�1
1:n), where L is the total number of blocks

and x
0
1:n are word embeddings. In this way, a representa-

tion is allowed to build a direct relationship with another
long-distance representation. To feed the sequential order in-
formation, the deterministic or learned position embedding
(Vaswani et al. 2017) is introduced to expose the position
information to the model, i.e., x0

i becomes the sum of the
corresponding word embedding and the position embedding
for i.

The aforementioned treatment of SAN on sequential data
can be drawn a close resemblance to graph neural networks
by regarding the token sequence as an unlabeled fully-
connected graph (each token as a node) and taking the multi-
head attention mechanism as a specific message-passing
scheme. Such view on the relationship between SAN and
graph neural networks inspires our work.

Graph Transformer
Overview
For a graph with n nodes, previous graph neural networks
compute the node representation vi as a function of the input
node i and all its first-order neighborhoods N(i). The graph
structure is implicitly reflected by the receptive field of each
node representation. This local communication design, how-
ever, could be inefficient for long-distance information ex-
change. We introduce a new model, known as Graph Trans-
former, which provides an aggressively different paradigm
that enables relation-aware global communication.

2We refer interesting readers to Vaswani et al.(2017) for more
details.

The overall framework is shown in Fig. 2. The most im-
portant characteristic of the Graph Transformer is that it has
a fully-connected view on arbitrary input graphs. A node
is able to directly receive and send information to another
node no matter whether they are directly connected or not.
These operations are achieved by our proposed extension to
the original multi-head attention mechanism, the relation-
enhanced global attention mechanism described below. In a
nutshell, the relationship between any node pair is depicted
as the shortest relation path between them. These pairwise
relation paths are fed into a relation encoder for distributed
relation encoding. The node vectors are initialized as the
sum of the node embedding and absolute position embed-
dings. Multiple blocks of global attention network are then
stacked to compute the final node representations. At each
block, a node vector is updated based on all other node vec-
tors and the corresponding relation encodings. The resulted
node vectors at the last block are fed to the sequence decoder
for sequence generation.

Graph Encoder
Our graph encoder is responsible for transforming an input
graph into a set of corresponding node embeddings. To ap-
ply global attention on a graph, the central problem is how
to maintain the topological structure of the graph while al-
lowing fully-connected communication. To this end, we pro-
pose relation-enhanced global attention mechanism, which
is an extension of the vanilla multi-head attention. Our idea
is to incorporate explicit relation representation between two
nodes into their representation learning. Recall that, in the
standard multi-head attention, the attention score between
the element xi and the element xj is simply the dot-product
of their query vector and key vector respectively:

sij = f(xi, xj)

= xiW
T
q Wkxj

(1)

first-order neighborhood

• Different information passing schemes

• Attention over adjacent neighbors (Koncel-Kedziorski et al, 2019)

• Graph convolutional neural networks (Kipf and Welling 2017)

• Gated graph neural network (Li et al, 2016; Song et al, 2018)

• Drawbacks of existing graph neural network based
methods

• The local propagation nature precludes efficient global
communication

• The information may also be disrupted in the long
journey.

Motivation

long-distance

…

Motivation
• Graph Neural Network

• Graph Transformer (Ours)

shortest paths
Relation Encoder

want-01

believe-01

boy

girl

…

ARG0

ARG1

ARG0

ARG1

Graph Encoder Sequence Decoder

Self-Attention

Attention

+
+Position

Embedding

Node
Embedding Token

Embedding

Position
Embedding

Different colors represent different
shortest paths among node pairs.

Relation-Enhanced
Global Attention

Node Initialization

Output

. . .

(fully-connected view)

Figure 2: An overview of our proposed model.

feed-forward layers, residual connection, and layer normal-
ization.2 For brevity, we will denote the whole procedure
described above as a single function ATT(x, y1:m).

For an input sequence x1:n, the SAN-based encoder
computes the vector representations iteratively by x

L
i =

ATT(xL
i , x

L�1
1:n), where L is the total number of blocks

and x
0
1:n are word embeddings. In this way, a representa-

tion is allowed to build a direct relationship with another
long-distance representation. To feed the sequential order in-
formation, the deterministic or learned position embedding
(Vaswani et al. 2017) is introduced to expose the position
information to the model, i.e., x0

i becomes the sum of the
corresponding word embedding and the position embedding
for i.

The aforementioned treatment of SAN on sequential data
can be drawn a close resemblance to graph neural networks
by regarding the token sequence as an unlabeled fully-
connected graph (each token as a node) and taking the multi-
head attention mechanism as a specific message-passing
scheme. Such view on the relationship between SAN and
graph neural networks inspires our work.

Graph Transformer
Overview
For a graph with n nodes, previous graph neural networks
compute the node representation vi as a function of the input
node i and all its first-order neighborhoods N(i). The graph
structure is implicitly reflected by the receptive field of each
node representation. This local communication design, how-
ever, could be inefficient for long-distance information ex-
change. We introduce a new model, known as Graph Trans-
former, which provides an aggressively different paradigm
that enables relation-aware global communication.

2We refer interesting readers to Vaswani et al.(2017) for more
details.

The overall framework is shown in Fig. 2. The most im-
portant characteristic of the Graph Transformer is that it has
a fully-connected view on arbitrary input graphs. A node
is able to directly receive and send information to another
node no matter whether they are directly connected or not.
These operations are achieved by our proposed extension to
the original multi-head attention mechanism, the relation-
enhanced global attention mechanism described below. In a
nutshell, the relationship between any node pair is depicted
as the shortest relation path between them. These pairwise
relation paths are fed into a relation encoder for distributed
relation encoding. The node vectors are initialized as the
sum of the node embedding and absolute position embed-
dings. Multiple blocks of global attention network are then
stacked to compute the final node representations. At each
block, a node vector is updated based on all other node vec-
tors and the corresponding relation encodings. The resulted
node vectors at the last block are fed to the sequence decoder
for sequence generation.

Graph Encoder
Our graph encoder is responsible for transforming an input
graph into a set of corresponding node embeddings. To ap-
ply global attention on a graph, the central problem is how
to maintain the topological structure of the graph while al-
lowing fully-connected communication. To this end, we pro-
pose relation-enhanced global attention mechanism, which
is an extension of the vanilla multi-head attention. Our idea
is to incorporate explicit relation representation between two
nodes into their representation learning. Recall that, in the
standard multi-head attention, the attention score between
the element xi and the element xj is simply the dot-product
of their query vector and key vector respectively:

sij = f(xi, xj)

= xiW
T
q Wkxj

(1)

shortest paths
Relation Encoder

want-01

believe-01

boy

girl

…

ARG0

ARG1

ARG0

ARG1

Graph Encoder Sequence Decoder

Self-Attention

Attention

+
+Position

Embedding

Node
Embedding Token

Embedding

Position
Embedding

Different colors represent different
shortest paths among node pairs.

Relation-Enhanced
Global Attention

Node Initialization

Output

. . .

(fully-connected view)

Figure 2: An overview of our proposed model.

feed-forward layers, residual connection, and layer normal-
ization.2 For brevity, we will denote the whole procedure
described above as a single function ATT(x, y1:m).

For an input sequence x1:n, the SAN-based encoder
computes the vector representations iteratively by x

L
i =

ATT(xL
i , x

L�1
1:n), where L is the total number of blocks

and x
0
1:n are word embeddings. In this way, a representa-

tion is allowed to build a direct relationship with another
long-distance representation. To feed the sequential order in-
formation, the deterministic or learned position embedding
(Vaswani et al. 2017) is introduced to expose the position
information to the model, i.e., x0

i becomes the sum of the
corresponding word embedding and the position embedding
for i.

The aforementioned treatment of SAN on sequential data
can be drawn a close resemblance to graph neural networks
by regarding the token sequence as an unlabeled fully-
connected graph (each token as a node) and taking the multi-
head attention mechanism as a specific message-passing
scheme. Such view on the relationship between SAN and
graph neural networks inspires our work.

Graph Transformer
Overview
For a graph with n nodes, previous graph neural networks
compute the node representation vi as a function of the input
node i and all its first-order neighborhoods N(i). The graph
structure is implicitly reflected by the receptive field of each
node representation. This local communication design, how-
ever, could be inefficient for long-distance information ex-
change. We introduce a new model, known as Graph Trans-
former, which provides an aggressively different paradigm
that enables relation-aware global communication.

2We refer interesting readers to Vaswani et al.(2017) for more
details.

The overall framework is shown in Fig. 2. The most im-
portant characteristic of the Graph Transformer is that it has
a fully-connected view on arbitrary input graphs. A node
is able to directly receive and send information to another
node no matter whether they are directly connected or not.
These operations are achieved by our proposed extension to
the original multi-head attention mechanism, the relation-
enhanced global attention mechanism described below. In a
nutshell, the relationship between any node pair is depicted
as the shortest relation path between them. These pairwise
relation paths are fed into a relation encoder for distributed
relation encoding. The node vectors are initialized as the
sum of the node embedding and absolute position embed-
dings. Multiple blocks of global attention network are then
stacked to compute the final node representations. At each
block, a node vector is updated based on all other node vec-
tors and the corresponding relation encodings. The resulted
node vectors at the last block are fed to the sequence decoder
for sequence generation.

Graph Encoder
Our graph encoder is responsible for transforming an input
graph into a set of corresponding node embeddings. To ap-
ply global attention on a graph, the central problem is how
to maintain the topological structure of the graph while al-
lowing fully-connected communication. To this end, we pro-
pose relation-enhanced global attention mechanism, which
is an extension of the vanilla multi-head attention. Our idea
is to incorporate explicit relation representation between two
nodes into their representation learning. Recall that, in the
standard multi-head attention, the attention score between
the element xi and the element xj is simply the dot-product
of their query vector and key vector respectively:

sij = f(xi, xj)

= xiW
T
q Wkxj

(1)

first-order neighborhood

fully connected view

Graph-to-Sequence
• Graph Encoder

• responsible for transforming an input graph into a set of
corresponding node embeddings.

• Sequence Decoder

• responsible for yield the natural language sequence.

Graph Encoder
shortest paths

Relation Encoder

want-01

believe-01

boy

girl

…

ARG0

ARG1

ARG0

ARG1

Graph Encoder Sequence Decoder

Self-Attention

Attention

+
+Position

Embedding

Node
Embedding Token

Embedding

Position
Embedding

Different colors represent different
shortest paths among node pairs.

Relation-Enhanced
Global Attention

Node Initialization

Output

. . .

(fully-connected view)

Figure 2: An overview of our proposed model.

feed-forward layers, residual connection, and layer normal-
ization.2 For brevity, we will denote the whole procedure
described above as a single function ATT(x, y1:m).

For an input sequence x1:n, the SAN-based encoder
computes the vector representations iteratively by x

L
i =

ATT(xL
i , x

L�1
1:n), where L is the total number of blocks

and x
0
1:n are word embeddings. In this way, a representa-

tion is allowed to build a direct relationship with another
long-distance representation. To feed the sequential order in-
formation, the deterministic or learned position embedding
(Vaswani et al. 2017) is introduced to expose the position
information to the model, i.e., x0

i becomes the sum of the
corresponding word embedding and the position embedding
for i.

The aforementioned treatment of SAN on sequential data
can be drawn a close resemblance to graph neural networks
by regarding the token sequence as an unlabeled fully-
connected graph (each token as a node) and taking the multi-
head attention mechanism as a specific message-passing
scheme. Such view on the relationship between SAN and
graph neural networks inspires our work.

Graph Transformer
Overview
For a graph with n nodes, previous graph neural networks
compute the node representation vi as a function of the input
node i and all its first-order neighborhoods N(i). The graph
structure is implicitly reflected by the receptive field of each
node representation. This local communication design, how-
ever, could be inefficient for long-distance information ex-
change. We introduce a new model, known as Graph Trans-
former, which provides an aggressively different paradigm
that enables relation-aware global communication.

2We refer interesting readers to Vaswani et al.(2017) for more
details.

The overall framework is shown in Fig. 2. The most im-
portant characteristic of the Graph Transformer is that it has
a fully-connected view on arbitrary input graphs. A node
is able to directly receive and send information to another
node no matter whether they are directly connected or not.
These operations are achieved by our proposed extension to
the original multi-head attention mechanism, the relation-
enhanced global attention mechanism described below. In a
nutshell, the relationship between any node pair is depicted
as the shortest relation path between them. These pairwise
relation paths are fed into a relation encoder for distributed
relation encoding. The node vectors are initialized as the
sum of the node embedding and absolute position embed-
dings. Multiple blocks of global attention network are then
stacked to compute the final node representations. At each
block, a node vector is updated based on all other node vec-
tors and the corresponding relation encodings. The resulted
node vectors at the last block are fed to the sequence decoder
for sequence generation.

Graph Encoder
Our graph encoder is responsible for transforming an input
graph into a set of corresponding node embeddings. To ap-
ply global attention on a graph, the central problem is how
to maintain the topological structure of the graph while al-
lowing fully-connected communication. To this end, we pro-
pose relation-enhanced global attention mechanism, which
is an extension of the vanilla multi-head attention. Our idea
is to incorporate explicit relation representation between two
nodes into their representation learning. Recall that, in the
standard multi-head attention, the attention score between
the element xi and the element xj is simply the dot-product
of their query vector and key vector respectively:

sij = f(xi, xj)

= xiW
T
q Wkxj

(1)

fully connected view

• Explicit Relation Encoding
• Global Attention Network

Explicit Relation Encoding

want-01

believe-01

boy

girl

shortest paths ARG0

ARG1

ARG0

ARG1

Relation Encoder

…

• Shortest paths
• Recurrent neural networks

Global Attention Network

want-01

believe-01

boy

girl

+
Position

Embedding

Node
Embedding

Node Initialization

Relation-Enhanced
Global Attention

. . .

(fully-connected view)

• Relation-enhanced Global Attention Mechanism

Relation-enhanced Global
Attention Mechanism

shortest paths
Relation Encoder

want-01

believe-01

boy

girl

…

ARG0

ARG1

ARG0

ARG1

Graph Encoder Sequence Decoder

Self-Attention

Attention

+
+Position

Embedding

Node
Embedding Token

Embedding

Position
Embedding

Different colors represent different
shortest paths among node pairs.

Relation-Enhanced
Global Attention

Node Initialization

Output

. . .

(fully-connected view)

Figure 2: An overview of our proposed model.

feed-forward layers, residual connection, and layer normal-
ization.2 For brevity, we will denote the whole procedure
described above as a single function ATT(x, y1:m).

For an input sequence x1:n, the SAN-based encoder
computes the vector representations iteratively by x

L
i =

ATT(xL
i , x

L�1
1:n), where L is the total number of blocks

and x
0
1:n are word embeddings. In this way, a representa-

tion is allowed to build a direct relationship with another
long-distance representation. To feed the sequential order in-
formation, the deterministic or learned position embedding
(Vaswani et al. 2017) is introduced to expose the position
information to the model, i.e., x0

i becomes the sum of the
corresponding word embedding and the position embedding
for i.

The aforementioned treatment of SAN on sequential data
can be drawn a close resemblance to graph neural networks
by regarding the token sequence as an unlabeled fully-
connected graph (each token as a node) and taking the multi-
head attention mechanism as a specific message-passing
scheme. Such view on the relationship between SAN and
graph neural networks inspires our work.

Graph Transformer
Overview
For a graph with n nodes, previous graph neural networks
compute the node representation vi as a function of the input
node i and all its first-order neighborhoods N(i). The graph
structure is implicitly reflected by the receptive field of each
node representation. This local communication design, how-
ever, could be inefficient for long-distance information ex-
change. We introduce a new model, known as Graph Trans-
former, which provides an aggressively different paradigm
that enables relation-aware global communication.

2We refer interesting readers to Vaswani et al.(2017) for more
details.

The overall framework is shown in Fig. 2. The most im-
portant characteristic of the Graph Transformer is that it has
a fully-connected view on arbitrary input graphs. A node
is able to directly receive and send information to another
node no matter whether they are directly connected or not.
These operations are achieved by our proposed extension to
the original multi-head attention mechanism, the relation-
enhanced global attention mechanism described below. In a
nutshell, the relationship between any node pair is depicted
as the shortest relation path between them. These pairwise
relation paths are fed into a relation encoder for distributed
relation encoding. The node vectors are initialized as the
sum of the node embedding and absolute position embed-
dings. Multiple blocks of global attention network are then
stacked to compute the final node representations. At each
block, a node vector is updated based on all other node vec-
tors and the corresponding relation encodings. The resulted
node vectors at the last block are fed to the sequence decoder
for sequence generation.

Graph Encoder
Our graph encoder is responsible for transforming an input
graph into a set of corresponding node embeddings. To ap-
ply global attention on a graph, the central problem is how
to maintain the topological structure of the graph while al-
lowing fully-connected communication. To this end, we pro-
pose relation-enhanced global attention mechanism, which
is an extension of the vanilla multi-head attention. Our idea
is to incorporate explicit relation representation between two
nodes into their representation learning. Recall that, in the
standard multi-head attention, the attention score between
the element xi and the element xj is simply the dot-product
of their query vector and key vector respectively:

sij = f(xi, xj)

= xiW
T
q Wkxj

(1)

Relation-enhanced Global
Attention Mechanism

shortest paths
Relation Encoder

want-01

believe-01

boy

girl

…

ARG0

ARG1

ARG0

ARG1

Graph Encoder Sequence Decoder

Self-Attention

Attention

+
+Position

Embedding

Node
Embedding Token

Embedding

Position
Embedding

Different colors represent different
shortest paths among node pairs.

Relation-Enhanced
Global Attention

Node Initialization

Output

. . .

(fully-connected view)

Figure 2: An overview of our proposed model.

feed-forward layers, residual connection, and layer normal-
ization.2 For brevity, we will denote the whole procedure
described above as a single function ATT(x, y1:m).

For an input sequence x1:n, the SAN-based encoder
computes the vector representations iteratively by x

L
i =

ATT(xL
i , x

L�1
1:n), where L is the total number of blocks

and x
0
1:n are word embeddings. In this way, a representa-

tion is allowed to build a direct relationship with another
long-distance representation. To feed the sequential order in-
formation, the deterministic or learned position embedding
(Vaswani et al. 2017) is introduced to expose the position
information to the model, i.e., x0

i becomes the sum of the
corresponding word embedding and the position embedding
for i.

The aforementioned treatment of SAN on sequential data
can be drawn a close resemblance to graph neural networks
by regarding the token sequence as an unlabeled fully-
connected graph (each token as a node) and taking the multi-
head attention mechanism as a specific message-passing
scheme. Such view on the relationship between SAN and
graph neural networks inspires our work.

Graph Transformer
Overview
For a graph with n nodes, previous graph neural networks
compute the node representation vi as a function of the input
node i and all its first-order neighborhoods N(i). The graph
structure is implicitly reflected by the receptive field of each
node representation. This local communication design, how-
ever, could be inefficient for long-distance information ex-
change. We introduce a new model, known as Graph Trans-
former, which provides an aggressively different paradigm
that enables relation-aware global communication.

2We refer interesting readers to Vaswani et al.(2017) for more
details.

The overall framework is shown in Fig. 2. The most im-
portant characteristic of the Graph Transformer is that it has
a fully-connected view on arbitrary input graphs. A node
is able to directly receive and send information to another
node no matter whether they are directly connected or not.
These operations are achieved by our proposed extension to
the original multi-head attention mechanism, the relation-
enhanced global attention mechanism described below. In a
nutshell, the relationship between any node pair is depicted
as the shortest relation path between them. These pairwise
relation paths are fed into a relation encoder for distributed
relation encoding. The node vectors are initialized as the
sum of the node embedding and absolute position embed-
dings. Multiple blocks of global attention network are then
stacked to compute the final node representations. At each
block, a node vector is updated based on all other node vec-
tors and the corresponding relation encodings. The resulted
node vectors at the last block are fed to the sequence decoder
for sequence generation.

Graph Encoder
Our graph encoder is responsible for transforming an input
graph into a set of corresponding node embeddings. To ap-
ply global attention on a graph, the central problem is how
to maintain the topological structure of the graph while al-
lowing fully-connected communication. To this end, we pro-
pose relation-enhanced global attention mechanism, which
is an extension of the vanilla multi-head attention. Our idea
is to incorporate explicit relation representation between two
nodes into their representation learning. Recall that, in the
standard multi-head attention, the attention score between
the element xi and the element xj is simply the dot-product
of their query vector and key vector respectively:

sij = f(xi, xj)

= xiW
T
q Wkxj

(1)

Suppose we have learned a vector representation for the
relationship rij , which we will refer as relation encoding,
between the node i and the node j. Following the idea of
relative position embedding (Shaw, Uszkoreit, and Vaswani
2018; Dai et al. 2019), we propose to compute the attention
score as follows:

[ri!j ; rj!i] = Wrrij (2)
where we first split the relation encoding rij into the forward
relation encoding ri!j and the backward relation encoding
rj!i. Then we compute the attention score based on both
the node representations and their relation representation:

sij = g(xi, xj , rij)

= (xi + ri!j)W
T
q Wk(xj + rj!i)

= xiW
T
q Wkxj| {z }
(a)

+xiW
T
q Wkrj!i| {z }
(b)

+ ri!jW
T
q Wkxj| {z }
(c)

+ ri!jW
T
q Wkrj!i| {z }
(d)

(3)

Each term in Eq (3) corresponds to some intuitive mean-
ing according to their formalization. The term (a) captures
purely content-based addressing, which is the original term
in vanilla attention mechanism. The term (b) represents
a source-dependent relation bias. The term (c) governs a
target-dependent relation bias. The term (d) encodes the
universal relation bias. Our formalization provides a prin-
cipled way to model the element-relation interactions. In
comparison, it has broader coverage than Shaw, Uszkoreit,
and Vaswani(2018) in terms of additional terms (c) and (d),
and than Dai et al.(2019) in terms of the extra term (c) re-
spectively. More importantly, previous methods only model
the relative position in the context of sequential data, which
merely adopts the immediate embeddings of the relative po-
sitions (e.g, �1,+1). To depict the relation between two
nodes in a graph, we utilize a shortest-path based approach
as described below.

Relation Encoder Conceptually, the relation encoding
gives the model a global guidance about how information
should be gathered and distributed, i.e., where to attend. For
most graphical structures in NLP, the edge label conveys di-
rect relationship between adjacent nodes (e.g., the semantic
role played by concept-to-concept, and the dependency re-
lation between two words). We extend this one-hop relation
definition into multi-hop relation reasoning for characteriz-
ing the relationship between two arbitrary nodes. For exam-
ple, in Fig 1, the shortest path from the concept want-01 to
girl is “ want-01 ARG1�! believe-01

ARG0�! girl”,
which conveys that girl is the object of the wanted ac-
tion. Intuitively, the shortest path between two nodes gives
the closest and arguably the most important relationship be-
tween them. Therefore, we propose to use the shortest paths
(relation sequence) between two nodes to characterize their
relationship.3 Following the sequential nature of the rela-

3For the case that there are multiple shortest paths, we randomly
sample one during training and take the averaged representation
during testing.

tion sequence, we employs recurrent neural networks with
Gated Recurrent Unit (GRU) (Cho et al. 2014) for trans-
forming relation sequence into a distributed representation.
Formally, we represent the shortest relation path spi!j =
[e(i, k1), e(k1, k2), . . . , e(kn, j)] between the node i and the
node j, where e(·, ·) indicates the edge label and k1:n are the
relay nodes. We employ bi-directional GRUs for sequence
encoding:

�!
st = GRUf (

��!
st�1, spt)

 �
st = GRUb(

 ��
st+1, spt)

The last hidden states of the forward GRU network and the
backward GRU networks are concatenated to form the final
relation encoding rij = [�!sn; �s0].
Bidirectionality Though in theory, our architecture can
deal with arbitrary input graphs, the most widely adopted
graphs in the real problems are directed acyclic graphs
(DAGs). This implies that the node embedding information
will be propagated in one pre-specified direction. However,
the reverse direction informs the equivalent information flow
as well. To facilitate communication in both directions, we
add reverse edges to the graph. The reverse edge connects
the same two nodes as the original edge but in a different di-
rection and with a reversed label. For example, we will draw
a virtual edge believe-01

RARG1�! want-01 accord-
ing to the original edge want-01

ARG1�! believe-01.
For convenience, we also introduce self-loop edges for each
node. These extra edges have specific labels, hence their own
parameters in the network. We also introduce an extra global
node into every graph, who has a direct edge to all other
nodes with the special label global. The final representation
xglobal of the global node serves as a whole graph represen-
tation.

Absolute Position Besides pairwise relationship, some
absolute positional information can also be beneficial. For
example, the root of an AMR graph serves as a rudimen-
tary representation of the overall focus, making the mini-
mum distance from the root node partially reflect the impor-
tance of the corresponding concept in the whole-sentence se-
mantics. The sequence order of tokens in a dependency tree
also provides complementary information to dependency re-
lations. In order for the model to make use of the absolute
positions of nodes, we add the positional embeddings to the
input embeddings at the bottom of the encoder stacks. For
example, want-01 in Fig 1 is the root node of the AMR
graph, so its index should be 0. Notice we denote the index
of the global node as 0 as well.

Sequence Decoder
Our sequence decoder basically follows the same spirit of
the sequential Transformer decoder. The decoder yields the
natural language sequence by calculating a sequence of hid-
den states sequentially. One distinct characteristic is that we
use the global graph representation xglobal for initializing
the hidden states at each time step. The hidden state ht at
each time step t is then updated by interleaving multiple
rounds of attention over the output of the encoder (node

Relation-enhanced Global
Attention Mechanism

shortest paths
Relation Encoder

want-01

believe-01

boy

girl

…

ARG0

ARG1

ARG0

ARG1

Graph Encoder Sequence Decoder

Self-Attention

Attention

+
+Position

Embedding

Node
Embedding Token

Embedding

Position
Embedding

Different colors represent different
shortest paths among node pairs.

Relation-Enhanced
Global Attention

Node Initialization

Output

. . .

(fully-connected view)

Figure 2: An overview of our proposed model.

feed-forward layers, residual connection, and layer normal-
ization.2 For brevity, we will denote the whole procedure
described above as a single function ATT(x, y1:m).

For an input sequence x1:n, the SAN-based encoder
computes the vector representations iteratively by x

L
i =

ATT(xL
i , x

L�1
1:n), where L is the total number of blocks

and x
0
1:n are word embeddings. In this way, a representa-

tion is allowed to build a direct relationship with another
long-distance representation. To feed the sequential order in-
formation, the deterministic or learned position embedding
(Vaswani et al. 2017) is introduced to expose the position
information to the model, i.e., x0

i becomes the sum of the
corresponding word embedding and the position embedding
for i.

The aforementioned treatment of SAN on sequential data
can be drawn a close resemblance to graph neural networks
by regarding the token sequence as an unlabeled fully-
connected graph (each token as a node) and taking the multi-
head attention mechanism as a specific message-passing
scheme. Such view on the relationship between SAN and
graph neural networks inspires our work.

Graph Transformer
Overview
For a graph with n nodes, previous graph neural networks
compute the node representation vi as a function of the input
node i and all its first-order neighborhoods N(i). The graph
structure is implicitly reflected by the receptive field of each
node representation. This local communication design, how-
ever, could be inefficient for long-distance information ex-
change. We introduce a new model, known as Graph Trans-
former, which provides an aggressively different paradigm
that enables relation-aware global communication.

2We refer interesting readers to Vaswani et al.(2017) for more
details.

The overall framework is shown in Fig. 2. The most im-
portant characteristic of the Graph Transformer is that it has
a fully-connected view on arbitrary input graphs. A node
is able to directly receive and send information to another
node no matter whether they are directly connected or not.
These operations are achieved by our proposed extension to
the original multi-head attention mechanism, the relation-
enhanced global attention mechanism described below. In a
nutshell, the relationship between any node pair is depicted
as the shortest relation path between them. These pairwise
relation paths are fed into a relation encoder for distributed
relation encoding. The node vectors are initialized as the
sum of the node embedding and absolute position embed-
dings. Multiple blocks of global attention network are then
stacked to compute the final node representations. At each
block, a node vector is updated based on all other node vec-
tors and the corresponding relation encodings. The resulted
node vectors at the last block are fed to the sequence decoder
for sequence generation.

Graph Encoder
Our graph encoder is responsible for transforming an input
graph into a set of corresponding node embeddings. To ap-
ply global attention on a graph, the central problem is how
to maintain the topological structure of the graph while al-
lowing fully-connected communication. To this end, we pro-
pose relation-enhanced global attention mechanism, which
is an extension of the vanilla multi-head attention. Our idea
is to incorporate explicit relation representation between two
nodes into their representation learning. Recall that, in the
standard multi-head attention, the attention score between
the element xi and the element xj is simply the dot-product
of their query vector and key vector respectively:

sij = f(xi, xj)

= xiW
T
q Wkxj

(1)

Suppose we have learned a vector representation for the
relationship rij , which we will refer as relation encoding,
between the node i and the node j. Following the idea of
relative position embedding (Shaw, Uszkoreit, and Vaswani
2018; Dai et al. 2019), we propose to compute the attention
score as follows:

[ri!j ; rj!i] = Wrrij (2)
where we first split the relation encoding rij into the forward
relation encoding ri!j and the backward relation encoding
rj!i. Then we compute the attention score based on both
the node representations and their relation representation:

sij = g(xi, xj , rij)

= (xi + ri!j)W
T
q Wk(xj + rj!i)

= xiW
T
q Wkxj| {z }
(a)

+xiW
T
q Wkrj!i| {z }
(b)

+ ri!jW
T
q Wkxj| {z }
(c)

+ ri!jW
T
q Wkrj!i| {z }
(d)

(3)

Each term in Eq (3) corresponds to some intuitive mean-
ing according to their formalization. The term (a) captures
purely content-based addressing, which is the original term
in vanilla attention mechanism. The term (b) represents
a source-dependent relation bias. The term (c) governs a
target-dependent relation bias. The term (d) encodes the
universal relation bias. Our formalization provides a prin-
cipled way to model the element-relation interactions. In
comparison, it has broader coverage than Shaw, Uszkoreit,
and Vaswani(2018) in terms of additional terms (c) and (d),
and than Dai et al.(2019) in terms of the extra term (c) re-
spectively. More importantly, previous methods only model
the relative position in the context of sequential data, which
merely adopts the immediate embeddings of the relative po-
sitions (e.g, �1,+1). To depict the relation between two
nodes in a graph, we utilize a shortest-path based approach
as described below.

Relation Encoder Conceptually, the relation encoding
gives the model a global guidance about how information
should be gathered and distributed, i.e., where to attend. For
most graphical structures in NLP, the edge label conveys di-
rect relationship between adjacent nodes (e.g., the semantic
role played by concept-to-concept, and the dependency re-
lation between two words). We extend this one-hop relation
definition into multi-hop relation reasoning for characteriz-
ing the relationship between two arbitrary nodes. For exam-
ple, in Fig 1, the shortest path from the concept want-01 to
girl is “ want-01 ARG1�! believe-01

ARG0�! girl”,
which conveys that girl is the object of the wanted ac-
tion. Intuitively, the shortest path between two nodes gives
the closest and arguably the most important relationship be-
tween them. Therefore, we propose to use the shortest paths
(relation sequence) between two nodes to characterize their
relationship.3 Following the sequential nature of the rela-

3For the case that there are multiple shortest paths, we randomly
sample one during training and take the averaged representation
during testing.

tion sequence, we employs recurrent neural networks with
Gated Recurrent Unit (GRU) (Cho et al. 2014) for trans-
forming relation sequence into a distributed representation.
Formally, we represent the shortest relation path spi!j =
[e(i, k1), e(k1, k2), . . . , e(kn, j)] between the node i and the
node j, where e(·, ·) indicates the edge label and k1:n are the
relay nodes. We employ bi-directional GRUs for sequence
encoding:

�!
st = GRUf (

��!
st�1, spt)

 �
st = GRUb(

 ��
st+1, spt)

The last hidden states of the forward GRU network and the
backward GRU networks are concatenated to form the final
relation encoding rij = [�!sn; �s0].
Bidirectionality Though in theory, our architecture can
deal with arbitrary input graphs, the most widely adopted
graphs in the real problems are directed acyclic graphs
(DAGs). This implies that the node embedding information
will be propagated in one pre-specified direction. However,
the reverse direction informs the equivalent information flow
as well. To facilitate communication in both directions, we
add reverse edges to the graph. The reverse edge connects
the same two nodes as the original edge but in a different di-
rection and with a reversed label. For example, we will draw
a virtual edge believe-01

RARG1�! want-01 accord-
ing to the original edge want-01

ARG1�! believe-01.
For convenience, we also introduce self-loop edges for each
node. These extra edges have specific labels, hence their own
parameters in the network. We also introduce an extra global
node into every graph, who has a direct edge to all other
nodes with the special label global. The final representation
xglobal of the global node serves as a whole graph represen-
tation.

Absolute Position Besides pairwise relationship, some
absolute positional information can also be beneficial. For
example, the root of an AMR graph serves as a rudimen-
tary representation of the overall focus, making the mini-
mum distance from the root node partially reflect the impor-
tance of the corresponding concept in the whole-sentence se-
mantics. The sequence order of tokens in a dependency tree
also provides complementary information to dependency re-
lations. In order for the model to make use of the absolute
positions of nodes, we add the positional embeddings to the
input embeddings at the bottom of the encoder stacks. For
example, want-01 in Fig 1 is the root node of the AMR
graph, so its index should be 0. Notice we denote the index
of the global node as 0 as well.

Sequence Decoder
Our sequence decoder basically follows the same spirit of
the sequential Transformer decoder. The decoder yields the
natural language sequence by calculating a sequence of hid-
den states sequentially. One distinct characteristic is that we
use the global graph representation xglobal for initializing
the hidden states at each time step. The hidden state ht at
each time step t is then updated by interleaving multiple
rounds of attention over the output of the encoder (node

Suppose we have learned a vector representation for the
relationship rij , which we will refer as relation encoding,
between the node i and the node j. Following the idea of
relative position embedding (Shaw, Uszkoreit, and Vaswani
2018; Dai et al. 2019), we propose to compute the attention
score as follows:

[ri!j ; rj!i] = Wrrij (2)
where we first split the relation encoding rij into the forward
relation encoding ri!j and the backward relation encoding
rj!i. Then we compute the attention score based on both
the node representations and their relation representation:

sij = g(xi, xj , rij)

= (xi + ri!j)W
T
q Wk(xj + rj!i)

= xiW
T
q Wkxj| {z }
(a)

+xiW
T
q Wkrj!i| {z }
(b)

+ ri!jW
T
q Wkxj| {z }
(c)

+ ri!jW
T
q Wkrj!i| {z }
(d)

(3)

Each term in Eq (3) corresponds to some intuitive mean-
ing according to their formalization. The term (a) captures
purely content-based addressing, which is the original term
in vanilla attention mechanism. The term (b) represents
a source-dependent relation bias. The term (c) governs a
target-dependent relation bias. The term (d) encodes the
universal relation bias. Our formalization provides a prin-
cipled way to model the element-relation interactions. In
comparison, it has broader coverage than Shaw, Uszkoreit,
and Vaswani(2018) in terms of additional terms (c) and (d),
and than Dai et al.(2019) in terms of the extra term (c) re-
spectively. More importantly, previous methods only model
the relative position in the context of sequential data, which
merely adopts the immediate embeddings of the relative po-
sitions (e.g, �1,+1). To depict the relation between two
nodes in a graph, we utilize a shortest-path based approach
as described below.

Relation Encoder Conceptually, the relation encoding
gives the model a global guidance about how information
should be gathered and distributed, i.e., where to attend. For
most graphical structures in NLP, the edge label conveys di-
rect relationship between adjacent nodes (e.g., the semantic
role played by concept-to-concept, and the dependency re-
lation between two words). We extend this one-hop relation
definition into multi-hop relation reasoning for characteriz-
ing the relationship between two arbitrary nodes. For exam-
ple, in Fig 1, the shortest path from the concept want-01 to
girl is “ want-01 ARG1�! believe-01

ARG0�! girl”,
which conveys that girl is the object of the wanted ac-
tion. Intuitively, the shortest path between two nodes gives
the closest and arguably the most important relationship be-
tween them. Therefore, we propose to use the shortest paths
(relation sequence) between two nodes to characterize their
relationship.3 Following the sequential nature of the rela-

3For the case that there are multiple shortest paths, we randomly
sample one during training and take the averaged representation
during testing.

tion sequence, we employs recurrent neural networks with
Gated Recurrent Unit (GRU) (Cho et al. 2014) for trans-
forming relation sequence into a distributed representation.
Formally, we represent the shortest relation path spi!j =
[e(i, k1), e(k1, k2), . . . , e(kn, j)] between the node i and the
node j, where e(·, ·) indicates the edge label and k1:n are the
relay nodes. We employ bi-directional GRUs for sequence
encoding:

�!
st = GRUf (

��!
st�1, spt)

 �
st = GRUb(

 ��
st+1, spt)

The last hidden states of the forward GRU network and the
backward GRU networks are concatenated to form the final
relation encoding rij = [�!sn; �s0].
Bidirectionality Though in theory, our architecture can
deal with arbitrary input graphs, the most widely adopted
graphs in the real problems are directed acyclic graphs
(DAGs). This implies that the node embedding information
will be propagated in one pre-specified direction. However,
the reverse direction informs the equivalent information flow
as well. To facilitate communication in both directions, we
add reverse edges to the graph. The reverse edge connects
the same two nodes as the original edge but in a different di-
rection and with a reversed label. For example, we will draw
a virtual edge believe-01

RARG1�! want-01 accord-
ing to the original edge want-01

ARG1�! believe-01.
For convenience, we also introduce self-loop edges for each
node. These extra edges have specific labels, hence their own
parameters in the network. We also introduce an extra global
node into every graph, who has a direct edge to all other
nodes with the special label global. The final representation
xglobal of the global node serves as a whole graph represen-
tation.

Absolute Position Besides pairwise relationship, some
absolute positional information can also be beneficial. For
example, the root of an AMR graph serves as a rudimen-
tary representation of the overall focus, making the mini-
mum distance from the root node partially reflect the impor-
tance of the corresponding concept in the whole-sentence se-
mantics. The sequence order of tokens in a dependency tree
also provides complementary information to dependency re-
lations. In order for the model to make use of the absolute
positions of nodes, we add the positional embeddings to the
input embeddings at the bottom of the encoder stacks. For
example, want-01 in Fig 1 is the root node of the AMR
graph, so its index should be 0. Notice we denote the index
of the global node as 0 as well.

Sequence Decoder
Our sequence decoder basically follows the same spirit of
the sequential Transformer decoder. The decoder yields the
natural language sequence by calculating a sequence of hid-
den states sequentially. One distinct characteristic is that we
use the global graph representation xglobal for initializing
the hidden states at each time step. The hidden state ht at
each time step t is then updated by interleaving multiple
rounds of attention over the output of the encoder (node

Relation-enhanced Global
Attention Mechanism

Suppose we have learned a vector representation for the
relationship rij , which we will refer as relation encoding,
between the node i and the node j. Following the idea of
relative position embedding (Shaw, Uszkoreit, and Vaswani
2018; Dai et al. 2019), we propose to compute the attention
score as follows:

[ri!j ; rj!i] = Wrrij (2)
where we first split the relation encoding rij into the forward
relation encoding ri!j and the backward relation encoding
rj!i. Then we compute the attention score based on both
the node representations and their relation representation:

sij = g(xi, xj , rij)

= (xi + ri!j)W
T
q Wk(xj + rj!i)

= xiW
T
q Wkxj| {z }
(a)

+xiW
T
q Wkrj!i| {z }
(b)

+ ri!jW
T
q Wkxj| {z }
(c)

+ ri!jW
T
q Wkrj!i| {z }
(d)

(3)

Each term in Eq (3) corresponds to some intuitive mean-
ing according to their formalization. The term (a) captures
purely content-based addressing, which is the original term
in vanilla attention mechanism. The term (b) represents
a source-dependent relation bias. The term (c) governs a
target-dependent relation bias. The term (d) encodes the
universal relation bias. Our formalization provides a prin-
cipled way to model the element-relation interactions. In
comparison, it has broader coverage than Shaw, Uszkoreit,
and Vaswani(2018) in terms of additional terms (c) and (d),
and than Dai et al.(2019) in terms of the extra term (c) re-
spectively. More importantly, previous methods only model
the relative position in the context of sequential data, which
merely adopts the immediate embeddings of the relative po-
sitions (e.g, �1,+1). To depict the relation between two
nodes in a graph, we utilize a shortest-path based approach
as described below.

Relation Encoder Conceptually, the relation encoding
gives the model a global guidance about how information
should be gathered and distributed, i.e., where to attend. For
most graphical structures in NLP, the edge label conveys di-
rect relationship between adjacent nodes (e.g., the semantic
role played by concept-to-concept, and the dependency re-
lation between two words). We extend this one-hop relation
definition into multi-hop relation reasoning for characteriz-
ing the relationship between two arbitrary nodes. For exam-
ple, in Fig 1, the shortest path from the concept want-01 to
girl is “ want-01 ARG1�! believe-01

ARG0�! girl”,
which conveys that girl is the object of the wanted ac-
tion. Intuitively, the shortest path between two nodes gives
the closest and arguably the most important relationship be-
tween them. Therefore, we propose to use the shortest paths
(relation sequence) between two nodes to characterize their
relationship.3 Following the sequential nature of the rela-

3For the case that there are multiple shortest paths, we randomly
sample one during training and take the averaged representation
during testing.

tion sequence, we employs recurrent neural networks with
Gated Recurrent Unit (GRU) (Cho et al. 2014) for trans-
forming relation sequence into a distributed representation.
Formally, we represent the shortest relation path spi!j =
[e(i, k1), e(k1, k2), . . . , e(kn, j)] between the node i and the
node j, where e(·, ·) indicates the edge label and k1:n are the
relay nodes. We employ bi-directional GRUs for sequence
encoding:

�!
st = GRUf (

��!
st�1, spt)

 �
st = GRUb(

 ��
st+1, spt)

The last hidden states of the forward GRU network and the
backward GRU networks are concatenated to form the final
relation encoding rij = [�!sn; �s0].
Bidirectionality Though in theory, our architecture can
deal with arbitrary input graphs, the most widely adopted
graphs in the real problems are directed acyclic graphs
(DAGs). This implies that the node embedding information
will be propagated in one pre-specified direction. However,
the reverse direction informs the equivalent information flow
as well. To facilitate communication in both directions, we
add reverse edges to the graph. The reverse edge connects
the same two nodes as the original edge but in a different di-
rection and with a reversed label. For example, we will draw
a virtual edge believe-01

RARG1�! want-01 accord-
ing to the original edge want-01

ARG1�! believe-01.
For convenience, we also introduce self-loop edges for each
node. These extra edges have specific labels, hence their own
parameters in the network. We also introduce an extra global
node into every graph, who has a direct edge to all other
nodes with the special label global. The final representation
xglobal of the global node serves as a whole graph represen-
tation.

Absolute Position Besides pairwise relationship, some
absolute positional information can also be beneficial. For
example, the root of an AMR graph serves as a rudimen-
tary representation of the overall focus, making the mini-
mum distance from the root node partially reflect the impor-
tance of the corresponding concept in the whole-sentence se-
mantics. The sequence order of tokens in a dependency tree
also provides complementary information to dependency re-
lations. In order for the model to make use of the absolute
positions of nodes, we add the positional embeddings to the
input embeddings at the bottom of the encoder stacks. For
example, want-01 in Fig 1 is the root node of the AMR
graph, so its index should be 0. Notice we denote the index
of the global node as 0 as well.

Sequence Decoder
Our sequence decoder basically follows the same spirit of
the sequential Transformer decoder. The decoder yields the
natural language sequence by calculating a sequence of hid-
den states sequentially. One distinct characteristic is that we
use the global graph representation xglobal for initializing
the hidden states at each time step. The hidden state ht at
each time step t is then updated by interleaving multiple
rounds of attention over the output of the encoder (node

• The term (a) captures purely content-based addressing

• The term (b) represents a source-dependent relation bias.

• The term (c) governs a target-dependent relation bias.

• The term (d) encodes the universal relation bias.

Graph Transformer

shortest paths
Relation Encoder

want-01

believe-01

boy

girl

…

ARG0

ARG1

ARG0

ARG1

Graph Encoder Sequence Decoder

Self-Attention

Attention

+
+Position

Embedding

Node
Embedding Token

Embedding

Position
Embedding

Different colors represent different
shortest paths among node pairs.

Relation-Enhanced
Global Attention

Node Initialization

Output

. . .

(fully-connected view)

Figure 2: An overview of our proposed model.

feed-forward layers, residual connection, and layer normal-
ization.2 For brevity, we will denote the whole procedure
described above as a single function ATT(x, y1:m).

For an input sequence x1:n, the SAN-based encoder
computes the vector representations iteratively by x

L
i =

ATT(xL
i , x

L�1
1:n), where L is the total number of blocks

and x
0
1:n are word embeddings. In this way, a representa-

tion is allowed to build a direct relationship with another
long-distance representation. To feed the sequential order in-
formation, the deterministic or learned position embedding
(Vaswani et al. 2017) is introduced to expose the position
information to the model, i.e., x0

i becomes the sum of the
corresponding word embedding and the position embedding
for i.

The aforementioned treatment of SAN on sequential data
can be drawn a close resemblance to graph neural networks
by regarding the token sequence as an unlabeled fully-
connected graph (each token as a node) and taking the multi-
head attention mechanism as a specific message-passing
scheme. Such view on the relationship between SAN and
graph neural networks inspires our work.

Graph Transformer
Overview
For a graph with n nodes, previous graph neural networks
compute the node representation vi as a function of the input
node i and all its first-order neighborhoods N(i). The graph
structure is implicitly reflected by the receptive field of each
node representation. This local communication design, how-
ever, could be inefficient for long-distance information ex-
change. We introduce a new model, known as Graph Trans-
former, which provides an aggressively different paradigm
that enables relation-aware global communication.

2We refer interesting readers to Vaswani et al.(2017) for more
details.

The overall framework is shown in Fig. 2. The most im-
portant characteristic of the Graph Transformer is that it has
a fully-connected view on arbitrary input graphs. A node
is able to directly receive and send information to another
node no matter whether they are directly connected or not.
These operations are achieved by our proposed extension to
the original multi-head attention mechanism, the relation-
enhanced global attention mechanism described below. In a
nutshell, the relationship between any node pair is depicted
as the shortest relation path between them. These pairwise
relation paths are fed into a relation encoder for distributed
relation encoding. The node vectors are initialized as the
sum of the node embedding and absolute position embed-
dings. Multiple blocks of global attention network are then
stacked to compute the final node representations. At each
block, a node vector is updated based on all other node vec-
tors and the corresponding relation encodings. The resulted
node vectors at the last block are fed to the sequence decoder
for sequence generation.

Graph Encoder
Our graph encoder is responsible for transforming an input
graph into a set of corresponding node embeddings. To ap-
ply global attention on a graph, the central problem is how
to maintain the topological structure of the graph while al-
lowing fully-connected communication. To this end, we pro-
pose relation-enhanced global attention mechanism, which
is an extension of the vanilla multi-head attention. Our idea
is to incorporate explicit relation representation between two
nodes into their representation learning. Recall that, in the
standard multi-head attention, the attention score between
the element xi and the element xj is simply the dot-product
of their query vector and key vector respectively:

sij = f(xi, xj)

= xiW
T
q Wkxj

(1)

Experiments

• AMR-to-text Generation
• Syntax-based Machine Translation

.

Experiments

• AMR-to-text Generation

.

Graph Transformer for Graph-to-Sequence Learning⇤

Deng Cai and Wai Lam
The Chinese University of Hong Kong

thisisjcykcd@gmail.com, wlam@se.cuhk.edu.hk

Abstract

The dominant graph-to-sequence transduction models em-
ploy graph neural networks for graph representation learning,
where the structural information is reflected by the receptive
field of neurons. Unlike graph neural networks that restrict
the information exchange between immediate neighborhood,
we propose a new model, known as Graph Transformer, that
uses explicit relation encoding and allows direct communica-
tion between two distant nodes. It provides a more efficient
way for global graph structure modeling. Experiments on the
applications of text generation from Abstract Meaning Rep-
resentation (AMR) and syntax-based neural machine transla-
tion show the superiority of our proposed model. Specifically,
our model achieves 27.4 BLEU on LDC2015E86 and 29.7
BLEU on LDC2017T10 for AMR-to-text generation, outper-
forming the state-of-the-art results by up to 2.2 points. On
the syntax-based translation tasks, our model establishes new
single-model state-of-the-art BLEU scores, 21.3 for English-
to-German and 14.1 for English-to-Czech, improving over
the existing best results, including ensembles, by over 1
BLEU.

Introduction
Graphical structure plays an important role in natural lan-
guage processing (NLP), they often serve as the central for-
malism for representing syntax, semantics, and knowledge.
For example, most syntactic representations (e.g., depen-
dency relation) are tree-based while most whole-sentence
semantic representation frameworks (e.g., Abstract Mean-
ing Representation (AMR) (Banarescu et al. 2013)) encode
sentence meaning as directed acyclic graphs. A range of
NLP applications can be framed as the process of graph-
to-sequence learning. For instance, text generation may in-
volve realizing a semantic graph into a surface form (Liu
et al. 2015) and syntactic machine translation incorporates
source-side syntax information for improving translation
quality (Bastings et al. 2017). Fig. 1 gives an example of
AMR-to-text generation.

⇤The work described in this paper is substantially supported by
a grant from the Research Grant Council of the Hong Kong Special
Administrative Region, China (Project Code: 14204418).
Copyright c� 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

boy

girl

The boy wants the girl to believe him.

boy

girl

want-01

believe-01

want-01

believe-01

ARG1

ARG0

ARG0

ARG1

ARG1
ARG0

ARG1

ARG0

Figure 1: An AMR graph (left) for the reference sentence
“The boy wants the girl to believe him.” and the correspond-
ing Levi graph (right).

While early work uses statistical methods or neural mod-
els after the linearization of graphs, graph neural networks
(GNNs) have been firmly established as the state-of-the-
art approaches for this task (Damonte and Cohen 2019;
Guo et al. 2019). GNNs typically compute the represen-
tation of each node iteratively based on those of its adja-
cent nodes. This inherently local propagation nature pre-
cludes efficient global communication, which becomes crit-
ical at larger graph sizes, as the distance between two nodes
exceeds the number of stacked layers. For instance, for
two nodes staying L hops away, at least L layers will be
needed in order to capture their dependencies. Furthermore,
even if two distant nodes are reachable, the information
may also be disrupted in the long journey (Xu et al. 2018;
Guo et al. 2019).

To address the above problems, we propose a new model,
known as Graph Transformer, which relies entirely on the
multi-head attention mechanism (Vaswani et al. 2017) to
draw global dependencies.1 Different to GNNs, the Graph
Transformer allows direct modeling of dependencies be-
tween any two nodes without regard to their distance in the
input graph. One undesirable consequence is that it essen-

1We note that the name Graph Transformer was used in a recent
work (Koncel-Kedziorski et al. 2019). However, it merely focuses
on the relations between directly connected nodes as other graph
neural networks.

The boy wants the
girl to believe him.

AMR-to-text Generation

Model LDC2015E86 LDC2017T10
BLEU CHRF++ METEOR BLEU CHRF++ METEOR

Song et al.(2016)† 22.4 - - - - -
Flanigan et al.(2016)† 23.0 - - - - -

Pourdamghani, Knight, and Hermjakob(2016)† 26.9 - - - - -
Song et al.(2017)† 25.6 - - - - -

Konstas et al.(2017) 22.0 - - - - -
Cao and Clark(2019)‡ 23.5 - - 26.8 - -

Song et al.(2018) 23.3 - - 24.9 - -
Beck, Haffari, and Cohn(2018) - - - 23.3 50.4

Damonte and Cohen(2019) 24.4 - 23.6 24.5 - 24.1
Guo et al.(2019) 25.7 54.5⇤ 31.5⇤ 27.6 57.3 34.0⇤

Ours 27.4 56.4 32.9 29.8 59.4 35.1

Table 3: Main results on AMR-to-text generation. Numbers with ⇤ are from the contact from the authors. - denotes that the
result is unknown because it is not provided in the corresponding paper.

Model Type English-German English-Czech
BLEU CHRF++ BLEU CHRF++

Bastings et al.(2017) Single 16.1 - 9.6 -
Beck, Haffari, and Cohn(2018) Single 16.7 42.4 9.8 33.3

Guo et al.(2019) Single 19.0 44.1 12.1 37.1
Beck, Haffari, and Cohn(2018) Ensemble 19.6 45.1 11.7 35.9

Guo et al.(2019) Ensemble 20.5 45.8 13.1 37.8
Ours Single 21.3 47.9 14.1 41.1

Table 4: Main results on syntax-based machine translation.

the first neural model that surpasses the strong non-neural
baseline established by Pourdamghani, Knight, and Herm-
jakob(2016). It is worth noting that those traditional methods
marked with † train their language models on the external
Gigaword corpus, thus they possess an additional advantage
of extra data. On the LDC2017T10 dataset, our model es-
tablishes a new record BLEU score of 29.8, improving over
the state-of-the-art sequence-to-sequence model (Cao and
Clark 2019) by 3 points and the state-of-the-art GNN-based
model (Guo et al. 2019) by 2.2 points. The results are even
more remarkable since the model of Cao and Clark(2019)
(marked with ‡) uses constituency syntax from an external
parser. Similar phenomena can be found on the additional
metrics of CHRF++ and METEOR (Denkowski and Lavie
2014). Those results suggest that current graph neural net-
works cannot make full use of the AMR graph structure, and
our Graph Transformer provides a promising alternative.

Syntax-based Machine Translation
Our second evaluation is syntax-based machine translation,
where the input is a source language dependency syntax tree
and the output is a plain target language string. We employ
the same data and settings from Bastings et al.(2017). Both
the English-German and the English-Czech datasets from
the WMT16 translation task.6 The English sentences are
parsed after tokenization to generate the dependency trees
on the source side using SyntaxNet (Alberti et al. 2017).7
On the Czech and German sides, texts are tokenized using

6http://www.statmt.org/wmt16/translation-task.html.
7https://github.com/tensorflow/models/tree/master/syntaxnet

the Moses tokenizer.8 Byte-pair encodings (Sennrich, Had-
dow, and Birch 2016) with 8,000 merge operations are used
to obtain subwords. The second block of Table 1 shows the
statistics for both datasets. For model configuration, we just
re-use the settings obtained in our AMR-to-text experiments.

Table 4 presents the results with comparison to existing
methods. On the English-to-German translation task, our
model achieves a BLEU score of 41.0, outperforming all of
the previously published single models by a large margin of
2.3 BLEU score. On the English-to-Czech translation task,
our model also outperforms the best previously reported sin-
gle models by an impressive margin of 2 BLEU points. In
fact, our single model already outperforms previous state-
of-the-art models that use ensembling. The advantages of
our method are also verified by the metric CHRF++.

An important point about these experiments is that we
did not tune the architecture: we simply employed the same
model in all experiments, only adjusting the batch size for
different dataset size. We speculate that even better results
would be obtained by tuning the architecture to individ-
ual tasks. Nevertheless, we still obtained improved perfor-
mance over previous works, underlining the generality of
our model.

More Analysis
The overall scores show a great advantage of the Graph
Transformer over existing methods, including the state-of-
the-art GNN-based models. However, they do not shed light
into how this is achieved. In order to further reveal the source
of performance gain, we perform a series of analyses based

8https://github.com/moses-smt/mosesdecoder.

Dataset #train #dev #test #edge types #node types avg #nodes avg #edges avg diameter
LDC2015E86 16,833 1,368 1,371 113 18735 17.34 17.53 6.98
LDC2017T10 36,521 1,368 1,371 116 24693 14.51 14.62 6.15
English-Czech 181,112 2,656 2,999 46 78017 23.18 22.18 8.36

English-German 226,822 2,169 2,999 46 87219 23.29 22.29 8.42

Table 1: Data statistics of all four datasets. #train/dev/test indicates the number of instances in each set, avg
#nodes/edges/diameter represents the averaged value of nodes/edge/diameter size of a graph.

model component hyper-parameter value

char-level CNN

number of filters 256
width of filters 3

char embedding size 32
final hidden size 128

Embeddings node embedding size 300
edge embedding size 200
token embedding size 300

Multi-head attention
number of heads 8
hidden state size 512

feed-forward hidden size 1024

Table 2: Hyper-parameters settings.

embeddings) and attention over previously-generated tokens
(token embeddings). Both are implemented by the multi-
head attention mechanism. xglobal is removed when per-
forming the sequence-to-graph attention.

Copy mechanism To address the data sparsity issue in
token prediction, we include a copy mechanism (Gu et al.
2016) in similar spirit to most recent works. Concretely, a
single-head attention is computed based on the decoder state
ht and the node representation x1:n, where a

i
t denotes the

attention weight of the node vi in the current time step t.
Our model can either directly copy the type name of a node
(node label) or generate from a pre-defined vocabulary V .
Formally, the prediction probability of a token y is given by:

P (y|ht) = P (gen|ht)gen(y|ht) + P (copy|ht)
X

i2S(y)

a
i
t

where S(y) is the set of nodes that have the same surface
form as y. P (gen|ht) and P (copy|ht) are computed by a
single layer neural network with softmax activation, and
gen(y|ht) = exp(wy

T
ht)/

P
y02V exp(w0

y
T
ht), where wy

(for y 2 V) denotes the model parameters. The copy mecha-
nism facilitates the generation of dates, numbers, and named
entities in both AMR-to-text generation and machine trans-
lation tasks in experiments.

Experiments
We assess the effectiveness of our models on two typical
graph-to-sequence learning tasks, namely AMR-to-text gen-
eration and syntax-based machine translation (MT). Fol-
lowing previous work, the results are mainly evaluated by
BLEU (Papineni et al. 2002) and CHRF++ (Popović 2017).
Specifically, we use case-insensitive scores for AMR and
case-sensitive BLEU scores for MT.

AMR-to-text Generation
Our first application is language generation from AMR, a se-
mantic formalism that represents sentences as rooted DAGs
(Banarescu et al. 2013). For this AMR-to-text generation
task, we use two benchmarks, namely the LDC2015E86
dataset and the LDC2017T10 dataset. The first block of
Table 1 shows the statistics of the two datasets. Similar
to Konstas et al.(2017), we apply entity simplification and
anonymization in the preprocessing steps and restore them
in the postprocessing steps.

The graph encoder uses randomly initialized node em-
beddings as well as the output from a learnable CNN with
character embeddings as input. The sequence decoder uses
randomly initialized token embeddings and another char-
level CNN. Model hyperparameters are chosen by a small
set of experiments on the development set of LDC2017T10.
The detailed settings are listed in Table 2. During testing,
we use a beam size of 8 for generating graphs. To mitigate
overfitting, we also apply dropout (Srivastava et al. 2014)
with the drop rate of 0.2 between different layers. We use
a special UNK token to replace the input node tag with a
rate of 0.33. Parameter optimization is performed with the
Adam optimizer (Kingma and Ba 2014) with �1 = 0.9 and
beta2 = 0.999. The same learning rate schedule of Vaswani
et al.(2017) is adopted in our experiments.4 For computation
efficiency, we gather all distinct shortest paths in a train-
ing/testing batch, and encode them into vector representa-
tions by the recurrent relation encoding procedure as de-
scribed above.5

We run comparisons on systems without ensembling nor
additional silver data. Specifically, the comparison methods
can be grouped into three categories: (1) feature-based sta-
tistical methods (Song et al. 2016; Pourdamghani, Knight,
and Hermjakob 2016; Song et al. 2017; Flanigan et al.
2016); (2) sequence-to-sequence neural models (Konstas et
al. 2017; Cao and Clark 2019), which use linearized graphs
as inputs; (3) recent works using different variants of graph
neural networks for encoding graph structures directly (Song
et al. 2018; Beck, Haffari, and Cohn 2018; Damonte and Co-
hen 2019; Guo et al. 2019). The results are shown in Table
3. For both datasets, our approach substantially outperforms
all previous methods. On the LDC2015E86 dataset, our
method achieves a BLEU score of 27.4, outperforming pre-
vious best-performing neural model (Guo et al. 2019) by a
large margin of 2.6 BLEU points. Also, our model becomes

4Code available at https://github.com/jcyk/gtos.
5This strategy reduces the number of related sequences to en-

code from O(mn
2) to a stable number when a large batch size m

is used.

• The first neural model that surpasses the strong non-neural baseline established by
Pourdamghani, Knight, and Hermjakob(2016)

• improving over the state-of-the-art sequence-to-sequence model by 3 BLEU points
and the state-of-the-art GNN-based model by BLEU 2.2 points

statistical
methods

Seq2seq (Neural)

GNN based

Experiments
• Syntax-based Machine Translation

.The monkey eats a banana

det nsubj
dobj

det

Figure 1: A dependency tree for the example sen-
tence: “The monkey eats a banana.”

th order neighborhood (i.e. nodes at most k hops
aways from the node) (Gilmer et al., 2017). They
are generally simple and computationally inexpen-
sive. We use Syntactic GCNs, a version of GCN
operating on top of syntactic dependency trees, re-
cently shown effective in the context of semantic
role labeling (Marcheggiani and Titov, 2017).

Since syntactic GCNs produce representations
at word level, it is straightforward to use them
as encoders within the attention-based encoder-
decoder framework. As NMT systems are trained
end-to-end, GCNs end up capturing syntactic
properties specifically relevant to the translation
task. Though GCNs can take word embeddings
as input, we will see that they are more effec-
tive when used as layers on top of recurrent neu-
ral network (RNN) or convolutional neural net-
work (CNN) encoders (Gehring et al., 2016), en-
riching their states with syntactic information.
A comparison to RNNs is the most challenging
test for GCNs, as it has been shown that RNNs
(e.g., LSTMs) are able to capture certain syntac-
tic phenomena (e.g., subject-verb agreement) rea-
sonably well on their own, without explicit tree-
bank supervision (Linzen et al., 2016; Shi et al.,
2016). Nevertheless, GCNs appear beneficial even
in this challenging set-up: we obtain +1.2 and +0.7
BLEU point improvements from using syntactic
GCNs on top of bidirectional RNNs for English-
German and English-Czech, respectively.

In principle, GCNs are flexible enough to incor-
porate any linguistic structure as long as they can
be represented as graphs (e.g., dependency-based
semantic-role labeling representations (Surdeanu
et al., 2008), AMR semantic graphs (Banarescu
et al., 2012) and co-reference chains). For ex-
ample, unlike recursive neural networks (Socher
et al., 2013), GCNs do not require the graphs to be
trees. However, in this work we solely focus on
dependency syntax and leave more general inves-
tigation for future work.

Our main contributions can be summarized as
follows:

• we introduce a method for incorporating
structure into NMT using syntactic GCNs;

• we show that GCNs can be used along with
RNN and CNN encoders;

• we show that incorporating structure is ben-
eficial for machine translation on English-
Czech and English-German.

2 Background

Notation. We use x for vectors, x1:t for a se-
quence of t vectors, and X for matrices. The i-th
value of vector x is denoted by xi. We use � for
vector concatenation.

2.1 Neural Machine Translation

In NMT (Kalchbrenner and Blunsom, 2013;
Sutskever et al., 2014; Cho et al., 2014b), given
example translation pairs from a parallel corpus, a
neural network is trained to directly estimate the
conditional distribution p(y1:Ty |x1:Tx) of translat-
ing a source sentence x1:Tx (a sequence of Tx

words) into a target sentence y1:Ty . NMT mod-
els typically consist of an encoder, a decoder and
some method for conditioning the decoder on the
encoder, for example, an attention mechanism. We
will now briefly describe the components that we
use in this paper.

2.1.1 Encoders

An encoder is a function that takes as input the
source sentence and produces a representation en-
coding its semantic content. We describe recur-
rent, convolutional and bag-of-words encoders.

Recurrent. Recurrent neural networks (RNNs)
(Elman, 1990) model sequential data. They re-
ceive one input vector at each time step and up-
date their hidden state to summarize all inputs up
to that point. Given an input sequence x1:Tx =
x1,x2, . . . ,xTx of word embeddings an RNN is
defined recursively as follows:

RNN(x1:t) = f(xt, RNN(x1:t�1))

where f is a nonlinear function such as an LSTM
(Hochreiter and Schmidhuber, 1997) or a GRU
(Cho et al., 2014b). We will use the function RNN
as an abstract mapping from an input sequence
x1:T to final hidden state RNN(x1:Tx), regardless
of the used nonlinearity. To not only summarize
the past of a word, but also its future, a bidirec-
tional RNN (Schuster and Paliwal, 1997; Irsoy and

1958

translate
猴⼦子吃了了⼀一个⾹香蕉

Syntax-based
Machine Translation

Dataset #train #dev #test #edge types #node types avg #nodes avg #edges avg diameter
LDC2015E86 16,833 1,368 1,371 113 18735 17.34 17.53 6.98
LDC2017T10 36,521 1,368 1,371 116 24693 14.51 14.62 6.15
English-Czech 181,112 2,656 2,999 46 78017 23.18 22.18 8.36

English-German 226,822 2,169 2,999 46 87219 23.29 22.29 8.42

Table 1: Data statistics of all four datasets. #train/dev/test indicates the number of instances in each set, avg
#nodes/edges/diameter represents the averaged value of nodes/edge/diameter size of a graph.

model component hyper-parameter value

char-level CNN

number of filters 256
width of filters 3

char embedding size 32
final hidden size 128

Embeddings node embedding size 300
edge embedding size 200
token embedding size 300

Multi-head attention
number of heads 8
hidden state size 512

feed-forward hidden size 1024

Table 2: Hyper-parameters settings.

embeddings) and attention over previously-generated tokens
(token embeddings). Both are implemented by the multi-
head attention mechanism. xglobal is removed when per-
forming the sequence-to-graph attention.

Copy mechanism To address the data sparsity issue in
token prediction, we include a copy mechanism (Gu et al.
2016) in similar spirit to most recent works. Concretely, a
single-head attention is computed based on the decoder state
ht and the node representation x1:n, where a

i
t denotes the

attention weight of the node vi in the current time step t.
Our model can either directly copy the type name of a node
(node label) or generate from a pre-defined vocabulary V .
Formally, the prediction probability of a token y is given by:

P (y|ht) = P (gen|ht)gen(y|ht) + P (copy|ht)
X

i2S(y)

a
i
t

where S(y) is the set of nodes that have the same surface
form as y. P (gen|ht) and P (copy|ht) are computed by a
single layer neural network with softmax activation, and
gen(y|ht) = exp(wy

T
ht)/

P
y02V exp(w0

y
T
ht), where wy

(for y 2 V) denotes the model parameters. The copy mecha-
nism facilitates the generation of dates, numbers, and named
entities in both AMR-to-text generation and machine trans-
lation tasks in experiments.

Experiments
We assess the effectiveness of our models on two typical
graph-to-sequence learning tasks, namely AMR-to-text gen-
eration and syntax-based machine translation (MT). Fol-
lowing previous work, the results are mainly evaluated by
BLEU (Papineni et al. 2002) and CHRF++ (Popović 2017).
Specifically, we use case-insensitive scores for AMR and
case-sensitive BLEU scores for MT.

AMR-to-text Generation
Our first application is language generation from AMR, a se-
mantic formalism that represents sentences as rooted DAGs
(Banarescu et al. 2013). For this AMR-to-text generation
task, we use two benchmarks, namely the LDC2015E86
dataset and the LDC2017T10 dataset. The first block of
Table 1 shows the statistics of the two datasets. Similar
to Konstas et al.(2017), we apply entity simplification and
anonymization in the preprocessing steps and restore them
in the postprocessing steps.

The graph encoder uses randomly initialized node em-
beddings as well as the output from a learnable CNN with
character embeddings as input. The sequence decoder uses
randomly initialized token embeddings and another char-
level CNN. Model hyperparameters are chosen by a small
set of experiments on the development set of LDC2017T10.
The detailed settings are listed in Table 2. During testing,
we use a beam size of 8 for generating graphs. To mitigate
overfitting, we also apply dropout (Srivastava et al. 2014)
with the drop rate of 0.2 between different layers. We use
a special UNK token to replace the input node tag with a
rate of 0.33. Parameter optimization is performed with the
Adam optimizer (Kingma and Ba 2014) with �1 = 0.9 and
beta2 = 0.999. The same learning rate schedule of Vaswani
et al.(2017) is adopted in our experiments.4 For computation
efficiency, we gather all distinct shortest paths in a train-
ing/testing batch, and encode them into vector representa-
tions by the recurrent relation encoding procedure as de-
scribed above.5

We run comparisons on systems without ensembling nor
additional silver data. Specifically, the comparison methods
can be grouped into three categories: (1) feature-based sta-
tistical methods (Song et al. 2016; Pourdamghani, Knight,
and Hermjakob 2016; Song et al. 2017; Flanigan et al.
2016); (2) sequence-to-sequence neural models (Konstas et
al. 2017; Cao and Clark 2019), which use linearized graphs
as inputs; (3) recent works using different variants of graph
neural networks for encoding graph structures directly (Song
et al. 2018; Beck, Haffari, and Cohn 2018; Damonte and Co-
hen 2019; Guo et al. 2019). The results are shown in Table
3. For both datasets, our approach substantially outperforms
all previous methods. On the LDC2015E86 dataset, our
method achieves a BLEU score of 27.4, outperforming pre-
vious best-performing neural model (Guo et al. 2019) by a
large margin of 2.6 BLEU points. Also, our model becomes

4Code available at https://github.com/jcyk/gtos.
5This strategy reduces the number of related sequences to en-

code from O(mn
2) to a stable number when a large batch size m

is used.

Dataset #train #dev #test #edge types #node types avg #nodes avg #edges avg diameter
LDC2015E86 16,833 1,368 1,371 113 18735 17.34 17.53 6.98
LDC2017T10 36,521 1,368 1,371 116 24693 14.51 14.62 6.15
English-Czech 181,112 2,656 2,999 46 78017 23.18 22.18 8.36

English-German 226,822 2,169 2,999 46 87219 23.29 22.29 8.42

Table 1: Data statistics of all four datasets. #train/dev/test indicates the number of instances in each set, avg
#nodes/edges/diameter represents the averaged value of nodes/edge/diameter size of a graph.

model component hyper-parameter value

char-level CNN

number of filters 256
width of filters 3

char embedding size 32
final hidden size 128

Embeddings node embedding size 300
edge embedding size 200
token embedding size 300

Multi-head attention
number of heads 8
hidden state size 512

feed-forward hidden size 1024

Table 2: Hyper-parameters settings.

embeddings) and attention over previously-generated tokens
(token embeddings). Both are implemented by the multi-
head attention mechanism. xglobal is removed when per-
forming the sequence-to-graph attention.

Copy mechanism To address the data sparsity issue in
token prediction, we include a copy mechanism (Gu et al.
2016) in similar spirit to most recent works. Concretely, a
single-head attention is computed based on the decoder state
ht and the node representation x1:n, where a

i
t denotes the

attention weight of the node vi in the current time step t.
Our model can either directly copy the type name of a node
(node label) or generate from a pre-defined vocabulary V .
Formally, the prediction probability of a token y is given by:

P (y|ht) = P (gen|ht)gen(y|ht) + P (copy|ht)
X

i2S(y)

a
i
t

where S(y) is the set of nodes that have the same surface
form as y. P (gen|ht) and P (copy|ht) are computed by a
single layer neural network with softmax activation, and
gen(y|ht) = exp(wy

T
ht)/

P
y02V exp(w0

y
T
ht), where wy

(for y 2 V) denotes the model parameters. The copy mecha-
nism facilitates the generation of dates, numbers, and named
entities in both AMR-to-text generation and machine trans-
lation tasks in experiments.

Experiments
We assess the effectiveness of our models on two typical
graph-to-sequence learning tasks, namely AMR-to-text gen-
eration and syntax-based machine translation (MT). Fol-
lowing previous work, the results are mainly evaluated by
BLEU (Papineni et al. 2002) and CHRF++ (Popović 2017).
Specifically, we use case-insensitive scores for AMR and
case-sensitive BLEU scores for MT.

AMR-to-text Generation
Our first application is language generation from AMR, a se-
mantic formalism that represents sentences as rooted DAGs
(Banarescu et al. 2013). For this AMR-to-text generation
task, we use two benchmarks, namely the LDC2015E86
dataset and the LDC2017T10 dataset. The first block of
Table 1 shows the statistics of the two datasets. Similar
to Konstas et al.(2017), we apply entity simplification and
anonymization in the preprocessing steps and restore them
in the postprocessing steps.

The graph encoder uses randomly initialized node em-
beddings as well as the output from a learnable CNN with
character embeddings as input. The sequence decoder uses
randomly initialized token embeddings and another char-
level CNN. Model hyperparameters are chosen by a small
set of experiments on the development set of LDC2017T10.
The detailed settings are listed in Table 2. During testing,
we use a beam size of 8 for generating graphs. To mitigate
overfitting, we also apply dropout (Srivastava et al. 2014)
with the drop rate of 0.2 between different layers. We use
a special UNK token to replace the input node tag with a
rate of 0.33. Parameter optimization is performed with the
Adam optimizer (Kingma and Ba 2014) with �1 = 0.9 and
beta2 = 0.999. The same learning rate schedule of Vaswani
et al.(2017) is adopted in our experiments.4 For computation
efficiency, we gather all distinct shortest paths in a train-
ing/testing batch, and encode them into vector representa-
tions by the recurrent relation encoding procedure as de-
scribed above.5

We run comparisons on systems without ensembling nor
additional silver data. Specifically, the comparison methods
can be grouped into three categories: (1) feature-based sta-
tistical methods (Song et al. 2016; Pourdamghani, Knight,
and Hermjakob 2016; Song et al. 2017; Flanigan et al.
2016); (2) sequence-to-sequence neural models (Konstas et
al. 2017; Cao and Clark 2019), which use linearized graphs
as inputs; (3) recent works using different variants of graph
neural networks for encoding graph structures directly (Song
et al. 2018; Beck, Haffari, and Cohn 2018; Damonte and Co-
hen 2019; Guo et al. 2019). The results are shown in Table
3. For both datasets, our approach substantially outperforms
all previous methods. On the LDC2015E86 dataset, our
method achieves a BLEU score of 27.4, outperforming pre-
vious best-performing neural model (Guo et al. 2019) by a
large margin of 2.6 BLEU points. Also, our model becomes

4Code available at https://github.com/jcyk/gtos.
5This strategy reduces the number of related sequences to en-

code from O(mn
2) to a stable number when a large batch size m

is used.

Model LDC2015E86 LDC2017T10
BLEU CHRF++ METEOR BLEU CHRF++ METEOR

Song et al.(2016)† 22.4 - - - - -
Flanigan et al.(2016)† 23.0 - - - - -

Pourdamghani, Knight, and Hermjakob(2016)† 26.9 - - - - -
Song et al.(2017)† 25.6 - - - - -

Konstas et al.(2017) 22.0 - - - - -
Cao and Clark(2019)‡ 23.5 - - 26.8 - -

Song et al.(2018) 23.3 - - 24.9 - -
Beck, Haffari, and Cohn(2018) - - - 23.3 50.4

Damonte and Cohen(2019) 24.4 - 23.6 24.5 - 24.1
Guo et al.(2019) 25.7 54.5⇤ 31.5⇤ 27.6 57.3 34.0⇤

Ours 27.4 56.4 32.9 29.8 59.4 35.1

Table 3: Main results on AMR-to-text generation. Numbers with ⇤ are from the contact from the authors. - denotes that the
result is unknown because it is not provided in the corresponding paper.

Model Type English-German English-Czech
BLEU CHRF++ BLEU CHRF++

Bastings et al.(2017) Single 16.1 - 9.6 -
Beck, Haffari, and Cohn(2018) Single 16.7 42.4 9.8 33.3

Guo et al.(2019) Single 19.0 44.1 12.1 37.1
Beck, Haffari, and Cohn(2018) Ensemble 19.6 45.1 11.7 35.9

Guo et al.(2019) Ensemble 20.5 45.8 13.1 37.8
Ours Single 21.3 47.9 14.1 41.1

Table 4: Main results on syntax-based machine translation.

the first neural model that surpasses the strong non-neural
baseline established by Pourdamghani, Knight, and Herm-
jakob(2016). It is worth noting that those traditional methods
marked with † train their language models on the external
Gigaword corpus, thus they possess an additional advantage
of extra data. On the LDC2017T10 dataset, our model es-
tablishes a new record BLEU score of 29.8, improving over
the state-of-the-art sequence-to-sequence model (Cao and
Clark 2019) by 3 points and the state-of-the-art GNN-based
model (Guo et al. 2019) by 2.2 points. The results are even
more remarkable since the model of Cao and Clark(2019)
(marked with ‡) uses constituency syntax from an external
parser. Similar phenomena can be found on the additional
metrics of CHRF++ and METEOR (Denkowski and Lavie
2014). Those results suggest that current graph neural net-
works cannot make full use of the AMR graph structure, and
our Graph Transformer provides a promising alternative.

Syntax-based Machine Translation
Our second evaluation is syntax-based machine translation,
where the input is a source language dependency syntax tree
and the output is a plain target language string. We employ
the same data and settings from Bastings et al.(2017). Both
the English-German and the English-Czech datasets from
the WMT16 translation task.6 The English sentences are
parsed after tokenization to generate the dependency trees
on the source side using SyntaxNet (Alberti et al. 2017).7
On the Czech and German sides, texts are tokenized using

6http://www.statmt.org/wmt16/translation-task.html.
7https://github.com/tensorflow/models/tree/master/syntaxnet

the Moses tokenizer.8 Byte-pair encodings (Sennrich, Had-
dow, and Birch 2016) with 8,000 merge operations are used
to obtain subwords. The second block of Table 1 shows the
statistics for both datasets. For model configuration, we just
re-use the settings obtained in our AMR-to-text experiments.

Table 4 presents the results with comparison to existing
methods. On the English-to-German translation task, our
model achieves a BLEU score of 41.0, outperforming all of
the previously published single models by a large margin of
2.3 BLEU score. On the English-to-Czech translation task,
our model also outperforms the best previously reported sin-
gle models by an impressive margin of 2 BLEU points. In
fact, our single model already outperforms previous state-
of-the-art models that use ensembling. The advantages of
our method are also verified by the metric CHRF++.

An important point about these experiments is that we
did not tune the architecture: we simply employed the same
model in all experiments, only adjusting the batch size for
different dataset size. We speculate that even better results
would be obtained by tuning the architecture to individ-
ual tasks. Nevertheless, we still obtained improved perfor-
mance over previous works, underlining the generality of
our model.

More Analysis
The overall scores show a great advantage of the Graph
Transformer over existing methods, including the state-of-
the-art GNN-based models. However, they do not shed light
into how this is achieved. In order to further reveal the source
of performance gain, we perform a series of analyses based

8https://github.com/moses-smt/mosesdecoder.

• Even better than previous state- of-the-art models that use ensembling!

More Analysis

(on the test set of LDC2017T10)

• Graph size: Our model has better ability for dealing with complicated graphs.

• Graph diameter: Our model is superior in featuring long-distance dependencies

• Graph reentrancies: Our model is consistently better than the GNN-based model when
there are more than one reentrancies

How Far Does Attention Look At
ch

rF
++

54.5

56.5

58.5

60.5

62.5

Graph Size

1-20 21-30 31-40 >40

Ours
Guo’19

(a)

ch
rF

++

54.0

55.8

57.6

59.4

61.2

Graph Diameter

1-7 8-14 >14

Ours
Guo’19

(b)

ch
rF

++

54.0

56.5

59.0

61.5

64.0

Graph Reentrancies

0-1 2-3 4-5 >5

Ours
Guo’19

(c)

Figure 3: CHRF++ scores with respect to (a) the graph size, (b) the graph diameter, and (c) the the number of reentrancies.

Figure 4: The average distance for maximum attention for
each head.

on different characteristics of graphs. For those analyses, we
use sentence-level CHRF++ scores, and take the macro av-
erage of them when needed. All experiments are conducted
with the test set of LDC2017T10.

Graph Size To assess the model’s performance for differ-
ent sizes of graphs, we group graphs into four classes and
show the curves of CHRF++ scores in Figure 3a. The re-
sults are presented with the contrast with the state-of-the-art
GNN-based model of Guo et al.(2019), denoted as Guo’19.
As seen, the performance of both models decreases as the
graph size increases. It is expected since a larger graph of-
ten contains more complex structure and the interactions
between graph elements are more difficult to capture. The
gap between ours and Guo’19 becomes larger for relatively
larger graphs while for small graphs, both models give simi-
lar performance. This result demonstrates that our model has
better ability for dealing with complicated graphs. As for ex-
tremely large graphs, the performance of both models have
a clear drop, yet ours is still slightly better.

Graph Diameter We then study the impact of graph diam-
eter.9 Graphs with large diameters have interactions between
two nodes that appear distant from each other. We conjec-
ture that it will cause severe difficulties for GNN-based mod-
els because they solely rely on local communication. Figure
3b confirms our hypothesis, as the curve of the GNN-based
model shows a clear slope. In contrast, our model has more
stable performance, and the gap between the two curves also

9The diameter of a graph is defined as the length of the longest
shortest path between two nodes.

illustrates the superiority of our model on featuring long-
distance dependencies.

Number of Reentrancies We also study the ability for
handling the reentrancies, where the same node has multiple
parent nodes (or the same concept participates in multiple
relations for AMR). The recent work (Damonte and Cohen
2019) has identified reentrancies as one of the most difficult
aspects of AMR structure. We bin the number of reentran-
cies occurred in a graph into four classes and plot Fig. 3c. It
can be observed that the gap between the GNN-based model
and the Graph transformer becomes noticeably wide when
there are more than one reentrancies. Since then, our model
is consistently better than the GNN-based model, maintain-
ing a margin of over 1 CHRF++ score.

How Far Does Attention Look At The Graph Trans-
former shows a strong capacity for processing complex and
large graphs. We attribute the success to the global commu-
nication design, as it provides opportunities for direct com-
munication in long distance. A natural and interesting ques-
tion is how well the model makes use of this property. To
answer this question, following Voita et al.(2019), we turn
to study the attention distribution of each attention head.
Specifically, we record the specific distance to which its
maximum attention weight is assigned as attention distance.
Fig. 4 shows the averaged attention distance after we run
our model on the development set of LDC2017T10. We can
observe that nearly half of the attention heads have an av-
erage attention distance larger than 2. The number of these
far-sighted heads generally increases as layers go deeper. In-
terestingly, the longest-reaching head (layer1-head5) and the
shortest-sighted head (layer1-head2) coexist in the very first
layer, while the former has an average distance over 5.

Conclusions
In this paper, we presented the Graph Transformer, the first
graph-to-sequence learning model based entirely on auto-
matic attention. Different from previous recurrent models
that require linearization of input graph and previous graph
neural network models that restrict the direct message pass-
ing in the first-order neighborhood, our model enables global
node-to-node communication. With the Graph Transformer,
we achieve the new state-of-the-art on two typical graph-to-
sequence generation tasks with four benchmark datasets.

• The number of these far-sighted heads generally increases as layers go deeper.

• Interestingly, the longest-reaching head (layer1-head5) and the shortest-sighted head

(layer1-head2) coexist in the very first layer.

https://github.com/jcyk/gtos
thisisjcykcd@gmail.com

Thanks!

Graph Transformer for
Graph-to-Sequence Learning

Deng Cai and Wai Lam

The Chinese University of Hong Kong

https://github.com/jcyk/AMR-parser
mailto:thisisjcykcd@gmail.com

