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Background

e Graphical structure in natural language
processing (NLP)

e Syntax

e Semantics e.g., Abstract Meaning Representation (AMR)
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Graph-to-Sequence

e Syntactic machine translation
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Graph-to-Sequence

* AMR-to-text generation

E> The boy wants the girl to believe him.




Existing Work

e Grammar-based methods (Jones et al., 2012; Flanigan et al., 2016; Song et
al., 2016; Song et al., 2017)

* use specialized graph-to-string transduction rules.

¢ SquSeq-based methods (Pourdamghani, Knight, and Hermjakob 2016;
Konstas et al. 2017)

e treat graph as sequence by linearizing input graphs.

 Graph neural network-based methods @Beck, Haffari, and Cohn

2018; Song et al., 2018; Basting et al, 2017; Damonte and Cohen, 2019; Guo et al., 2019;
Koncel-Kedziorski et al 2019)

e Directly and explicitly model the graph structure.



Existing Work

 Graph neural network based methods (Beck, Haffari, and Cohn 2018;

Song et al., 2018; Basting et al, 2017; Damonte and Cohen, 2019; Guo et al., 2019; Koncel-
Kedziorski et al, 2019)

e previous SOTA

e compute the representation of each node iteratively
based on those of its adjacent nodes.
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Existing Work

 Graph neural network based methods Beck, Haffari, and Cohn 2018;

Song et al., 2018; Basting et al, 2017; Damonte and Cohen, 2019; Guo et al., 2019; Koncel-
Kedziorski et al, 2019)
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e Different information passing schemes
o Attention over adjacent neighbors (koncel-Kedziorski et al, 2019)
 Graph convolutional neural networks ipf and welling 2017)

 Gated graph neural network (Liet al, 2016; Song et al, 2018)



Motivation

 Drawbacks of existing graph neural network based
methods

long-distance

* The local propagation nature precludes efficient global
communication

* The information may also be disrupted in the long
journey.



Motivation

e Graph Neural Network
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e Graph Transformer (Ours)
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Graph-to-Sequence

e Graph Encoder

e responsible for transforming an input graph into a set of
corresponding node embeddings.

e Sequence Decoder

e responsible for yield the natural language sequence.



Graph Encoder
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e Explicit Relation Encoding
 Global Attention Network



Explicit Relation Encoding
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e Shortest paths
e Recurrent neural networks



Global Attention Network
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e Relation-enhanced Global Attention Mechanism



Relation-enhanced Global
Attention Mechanism

sij = f(@i, xj)



Relation-enhanced Global
Attention Mechanism



Relation-enhanced Global
Attention Mechanism
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Relation-enhanced Global
Attention Mechanism

Sij = g(l‘i,fj,?“ij)
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* The term (a) captures purely content-based addressing

* The term (b) represents a source-dependent relation bias.
* The term (c) governs a target-dependent relation bias.
 The term (d) encodes the universal relation bias.



Graph Transformer

Graph Encoder

Sequence Decoder

Different colors represent different
shortest paths among node pairs.
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Experiments

e AMR-to-text Generation
e Syntax-based Machine Translation



Experiments

e AMR-to-text Generation
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AMR-to-text Generation

Dataset | #train | #dev | #test | #edge types | #node types | avg#nodes | avg#edges | avg diameter
LDC2015E86 16,833 | 1,368 | 1,371 113 18735 17.34 17.53 6.98
LDC2017T10 ‘ 36,521 ‘ 1,368 ‘ 1,371 ‘ 116 ‘ 24693 ‘ 14.51 ‘ 14.62 ‘ 6.15
Model LDC2015E86 LDC2017T10
BLEU CHRF++ METEOR BLEU CHRF++ METEOR
T Song et al.(2016)7 22.4 - - - - -
statistical Flanigan et al.(2016) 23.0 i i i i i
methods Pourdamghani, Knight, and Hermjakob(2016)7 26.9 - - - - -
Song et al.(2017)7 25.6 - - - - -
Konstas et al.(2017) 22.0 - - - - -
Seq2seq (Neural) ;g Clark(2019: 235 i i 26.8 : i
Song et al.(2018) 23.3 - - 24.9 - -
Beck, Haffari, and Cohn(2018) - - - 23.3 50.4
GNN based Damonte and Cohen(2019) 24.4 - 23.6 24.5 - 24.1
Guo et al.(2019) 25.7 54.5* 31.5" 27.6 57.3 34.0"
Ours 27.4 56.4 329 29.8 594 35.1

* The first neural model that surpasses the strong non-neural baseline established by
Pourdamghani, Knight, and Hermjakob(2016)

* improving over the state-of-the-art sequence-to-sequence model by 3 BLEU points
and the state-of-the-art GNN-based model by BLEU 2.2 points



Experiments

e Syntax-based Machine Translation
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Syntax-based
Machine Translation

Dataset | #train | #dev | #test | #edge types | #node types | avg#nodes | avg#edges | avg diameter

English-Czech | 181,112 | 2,656 | 2,999 46 78017 23.18 22.18 836
English-German | 226,822 ‘ 2,169 ‘ 2,999 ‘ 46 ‘ 87219 ‘ 23.29 | 22.29 | 8.42

English-German English-Czech

Model Iype ' BTEU [ cirF++ | BLEU | ChrF++
Bastings et al.(2017) Single 16.1 - 9.6 -

Beck, Haffari, and Cohn(2018) Single 16.7 42.4 9.8 33.3

Guo et al.(2019) Single 19.0 44.1 12.1 37.1

Beck, Haffari, and Cohn(2018) | Ensemble 19.6 45.1 11.7 35.9

Guo et al.(2019) Ensemble 20.5 45.8 13.1 37.8

Ours Single 21.3 47.9 14.1 41.1

* Even better than previous state- of-the-art models that use ensembling!
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Graph Reentrancies
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e Graph size: Our model has better ability for dealing with complicated graphs.

e Graph diameter: Our model is superior in featuring long-distance dependencies

e Graph reentrancies: Our model is consistently better than the GNN-based model when

there are more than one reentrancies



How Far Does Attention Look At
H

(O

layers
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heads
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attention distance

e The number of these far-sighted heads generally increases as layers go deeper.

* |nterestingly, the longest-reaching head (layer1-head5) and the shortest-sighted head
(layer1-head?2) coexist in the very first layer.
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